
HyperSQL User Guide

HyperSQL Database Engine 2.7.1

Edited by , Blaine Simpson, and Fred Toussi

HyperSQL User Guide: HyperSQL Database Engine 2.7.1
by , Blaine Simpson, and Fred Toussi

$Revision: 6621 $

Publication date 2022-10-20

Copyright 2002-2022 Blaine Simpson, Fred Toussi and The HSQL Development Group. Permission is granted to distribute this document without
any alteration under the terms of the HSQLDB license. You are not allowed to distribute or display this document on the web in an altered form.

iii

Table of Contents
Preface .. xiv

Available formats for this document ... xiv
1. Running and Using HyperSQL ... 1

Introduction ... 1
The HSQLDB Jar .. 1
Running Database Access Tools ... 2
A HyperSQL Database .. 2
In-Process Access to Database Catalogs ... 3
Server Modes .. 4

HyperSQL HSQL Server ... 4
HyperSQL HTTP Server ... 5
HyperSQL HTTP Servlet ... 5
Connecting to a Database Server ... 5
Security Considerations ... 6
Using Multiple Databases .. 6

Accessing the Data ... 6
Closing the Database .. 7
Creating a New Database .. 7

2. SQL Language ... 9
SQL Standards Support ... 9

Definition Statements (DDL and others) ... 10
Data Manipulation Statements (DML) .. 10
Data Query Statements (DQL) .. 11
Calling User Defined Procedures and Functions ... 11
Setting Properties for the Database and the Session ... 11
General Operations on Database .. 11
Transaction Statements .. 12
Comments in Statements .. 12
Statements in SQL Routines ... 13

SQL Data and Tables .. 13
Case Sensitivity .. 13
Persistent Tables .. 13
Temporary Tables ... 14

Short Guide to Data Types ... 14
Data Types and Operations .. 16

Numeric Types .. 17
Boolean Type .. 19
Character String Types .. 19
Binary String Types .. 20
Bit String Types ... 21
Lob Data .. 21
Storage and Handling of Java Objects .. 22
Type Length, Precision and Scale .. 23

Datetime types ... 23
Interval Types .. 28
Arrays .. 31

Array Definition ... 31
Array Reference ... 33
Array Operations .. 33

3. Schemas and Database Objects .. 36
Overview .. 36

HyperSQL User Guide

iv

Schemas and Schema Objects ... 36
Names and References .. 37
Character Sets .. 37
Collations .. 38
Distinct Types .. 39
Domains ... 39
Number Sequences ... 39
Tables .. 42
Views ... 42
Constraints .. 42
Assertions ... 44
Triggers .. 44
Routines ... 44
Indexes ... 44
Synonyms ... 44

Statements for Schema Definition and Manipulation ... 45
Common Elements and Statements .. 45
Renaming Objects .. 46
Commenting Objects ... 47
Schema Creation .. 47
Table Creation ... 48
Temporal System-Versioned Tables and SYSTEM_TIME Period ... 54
Table Settings .. 55
Table Manipulation ... 57
View Creation and Manipulation ... 61
Domain Creation and Manipulation .. 62
Trigger Creation ... 63
Routine Creation .. 64
Sequence Creation .. 67
SQL Procedure Statement .. 68
Other Schema Objects Creation and Alteration ... 69

The Information Schema .. 72
References to Database Objects ... 73
Predefined Character Sets, Collations and Domains ... 73
Views in INFORMATION SCHEMA .. 73
Visibility of Information .. 73
Name Information .. 74
Data Type Information .. 74
Product Information .. 74
Operations Information .. 74
SQL Standard Views ... 75

4. Built In Functions ... 82
Overview .. 82
String and Binary String Functions .. 83
JSON Functions ... 90
Numeric Functions .. 92
Date Time and Interval Functions .. 97

Functions to Report the Time Zone. ... 97
Functions to Report the Current Datetime ... 98
Functions to Extract an Element of a Datetime ... 99
Functions for Datetime Arithmetic ... 101
Functions to Convert or Format a Datetime ... 105

Array Functions .. 107
General Functions ... 109

HyperSQL User Guide

v

System Functions .. 111
5. Data Access and Change .. 116

Overview ... 116
Cursors And Result Sets .. 116

Columns and Rows ... 116
Navigation ... 116
Updatability ... 117
Sensitivity ... 118
Holdability ... 118
Autocommit ... 118
JDBC Overview ... 118
JDBC Parameters .. 119
JDBC and Data Change Statements .. 119
JDBC Callable Statement ... 120
JDBC Returned Values .. 120
Cursor Declaration .. 121

Syntax Elements ... 121
Literals ... 121
References, etc. .. 125
Value Expression .. 126
Predicates .. 133
Aggregate Functions .. 139
Other Syntax Elements .. 141

Data Access Statements ... 142
Select Statement ... 143
Table .. 143
Subquery ... 143
Query Specification ... 144
Table Expression .. 144
Joined Table .. 148
Selection ... 150
Projection .. 150
Computed Columns ... 150
Naming ... 150
Grouping Operations ... 151
Aggregation ... 153
Set Operations .. 153
With Clause and Recursive Queries .. 154
Query Expression .. 155
Ordering .. 156
Slicing .. 157
Indexes Used in SELECT and DML Statements ... 157

Data Change Statements ... 158
Delete Statement ... 158
Truncate Statement .. 158
Insert Statement .. 159
Update Statement .. 161
Merge Statement ... 162

Diagnostics and State .. 164
6. Sessions and Transactions ... 165

Overview ... 165
Session Attributes and Variables .. 165

Session Attributes ... 166
Session Variables .. 166

HyperSQL User Guide

vi

Session Tables .. 166
Transactions and Concurrency Control .. 167

Two Phase Locking ... 167
Two Phase Locking with Snapshot Isolation .. 168
Lock Contention in 2PL ... 168
Locks in SQL Routines and Triggers .. 168
MVCC .. 169
Choosing the Transaction Model .. 169
Schema and Database Change ... 170
Simultaneous Access to Tables .. 170
Viewing Sessions .. 171

Session and Transaction Control Statements .. 171
7. Text Tables .. 178

Overview ... 178
The Implementation .. 178

Definition of Tables .. 178
Scope and Reassignment .. 178
Null Values in Columns of Text Tables .. 179
Configuration ... 179
Disconnecting Text Tables ... 181

Text File Usage .. 181
Text File Global Properties ... 182
Transactions ... 183

8. Access Control ... 184
Overview ... 184
Authorizations and Access Control ... 184

Built-In Roles and Users .. 185
Listing Users and Roles ... 186
Access Rights .. 186
Simple Access Control ... 187
Fine-Grained Data Access Control ... 188

Statements for Authorization and Access Control .. 189
9. SQL-Invoked Routines ... 194

Overview ... 194
Routine Definition .. 195

Routine Characteristics .. 197
SQL Language Routines (PSM) ... 199

Advantages and Disadvantages .. 200
Routine Statements .. 200
Compound Statement ... 201
Table Variables .. 202
Variables ... 202
Cursors ... 203
Handlers .. 203
Assignment Statement .. 205
Select Statement : Single Row ... 205
Formal Parameters .. 206
Iterated Statements .. 206
Iterated FOR Statement .. 207
Conditional Statements .. 208
Return Statement .. 209
Control Statements .. 210
Raising Exceptions .. 210
Routine Polymorphism ... 211

HyperSQL User Guide

vii

Returning Data From Procedures ... 212
Recursive Routines .. 213

Java Language Routines (SQL/JRT) ... 214
Polymorphism .. 216
Java Language Procedures .. 216
Java Static Methods .. 218
Legacy Support .. 219
Securing Access to Classes and Routines .. 219
Warning .. 219

User-Defined Aggregate Functions ... 220
Definition of Aggregate Functions ... 220
SQL PSM Aggregate Functions ... 221
Java Aggregate Functions ... 222

10. Triggers ... 224
Overview ... 224

BEFORE Triggers ... 224
AFTER Triggers ... 225
INSTEAD OF Triggers .. 225

Trigger Properties ... 225
Trigger Event ... 225
Granularity .. 225
Trigger Action Time ... 226
References to Rows ... 226
Trigger Condition ... 226
Trigger Action in SQL ... 226
Trigger Action in Java ... 227

Trigger Creation ... 228
11. System Management .. 231

Modes of Operation .. 231
Deployment Types .. 231
Database Types .. 231
Tables ... 232
Large Objects ... 232
Deployment context .. 233

Indexes and Query Speed ... 233
Query Processing and Optimisation .. 235

Indexes and Conditions .. 235
Indexes and Operations .. 235
Indexes and ORDER BY, OFFSET and LIMIT .. 236

ACID, Persistence and Reliability .. 237
Atomicity, Consistency, Isolation, Durability ... 237
System Operations .. 237

Temporal System-Versioned Tables ... 238
Replicated Databases ... 239
Using Table Spaces ... 239
Checking Database Tables and Indexes ... 240
Backing Up and Restoring Database Catalogs .. 240

Making Online Backups ... 241
Offline Backup Utility Syntax ... 241
Making Offline Backups .. 241
Examining Backups ... 242
Restoring a Backup ... 242

Encrypted Databases ... 242
Creating and Accessing an Encrypted Database .. 242

HyperSQL User Guide

viii

Speed Considerations ... 243
Security Considerations .. 243

Monitoring Database Operations .. 244
External Statement Level Monitoring .. 244
Internal Statement Level Monitoring .. 244
Internal Event Monitoring .. 244
Log4J and JDK logging ... 244
Server Operation Monitoring ... 244

Database Security ... 245
Basic Security Recommendations ... 245
Beyond Security Defaults ... 245
Authentication Control ... 246

Statements ... 246
System Operations .. 246
Data Management Statements ... 248
Database Settings .. 250
SQL Conformance Settings ... 254
Cache, Persistence and Files Settings .. 264
Authentication Settings .. 268

12. Deployment Guide ... 270
Memory and Disk Use ... 270

Table Memory Allocation ... 270
Result Set Memory Allocation .. 270
Temporary Memory Use During Operations ... 271
Data Cache Memory Allocation ... 271
Object Pool Memory Allocation .. 271
Lob Memory Usage .. 271
Using NIO File Access .. 272
Disk Space Use .. 272
Using HyperSQL Without Logging Data Change .. 272
Bulk Inserts, Updates and Deletes .. 273

Managing Database Connections ... 273
Application Development and Testing .. 274
Tweaking the Mode of Operation .. 275

Embedded Databases in Desktop Applications .. 275
Embedded Databases in Server Applications .. 275
Mixed Mode : Embedding a HyperSQL Server (Listener) ... 275
Server Databases .. 276

Upgrading Databases ... 276
Manual Changes to the *.script File ... 276

Backward Compatibility Issues .. 277
HyperSQL Dependency Settings for Applications ... 279

What version to Pull ... 279
Range Versioning ... 279

13. Compatibility With Other DBMS ... 282
Compatibility Overview ... 282

PostgreSQL Compatibility .. 282
MySQL Compatibility ... 283
Firebird Compatibility .. 285
Apache Derby Compatibility ... 285
Oracle Compatibility ... 285
DB2 Compatibility .. 286
MS SQLServer and Sybase Compatibility ... 287

14. Properties ... 288

HyperSQL User Guide

ix

Connection URL ... 288
Variables in Connection URL ... 289
Connection Properties .. 289
Properties for Individual Connections ... 290
Properties for the Database ... 292

SQL Conformance Properties .. 294
Database Operations Properties ... 300
Database File and Memory Properties ... 301
Crypt Properties .. 307

System Properties ... 308
15. HyperSQL Network Listeners (Servers) ... 309

Listeners ... 309
HyperSQL Server ... 309
HyperSQL HTTP Server .. 309
HyperSQL HTTP Servlet ... 310

Server and Web Server Properties .. 310
Starting a Server from your Application .. 312
Shutting down a Server from your Application ... 312
Allowing a Connection to Open or Create a Database .. 312
Specifying Database Properties at Server Start ... 313
TLS Encryption .. 313

Requirements ... 313
Encrypting your JDBC connection ... 313
Making a Private-key Keystore .. 315
Automatic Server or WebServer startup on UNIX ... 316

Network Access Control .. 316
16. HyperSQL on UNIX .. 318

Purpose ... 318
Installation ... 318
Setting up Database Catalog and Listener .. 320
Accessing your Database .. 321
Create additional Accounts ... 326
Shutdown .. 326
Running Hsqldb as a System Daemon .. 326

Portability of hsqldb init script ... 327
Init script Setup Procedure ... 327
Troubleshooting the Init Script .. 331

Upgrading ... 332
17. HyperSQL via ODBC .. 333

Overview ... 333
Unix / Linux Installation .. 333
Windows Installation ... 333
Settings ... 336
Samples .. 338
Table of Settings .. 338

A. Lists of Keywords .. 340
List of SQL Standard Keywords .. 340
List of SQL Keywords Disallowed as HyperSQL Identifiers ... 341
Special Function Keywords .. 342

B. HyperSQL Database Files and Recovery ... 343
Database Files .. 343
States .. 343
Procedures ... 344

Clean Shutdown ... 344

HyperSQL User Guide

x

Startup .. 345
Restore ... 345

C. Building HSQLDB Jars ... 346
Purpose ... 346
Building with Gradle ... 346
Building with Ant ... 347

Obtaining Ant .. 347
Building HSQLDB with Ant ... 347

Building with IDE Compilers .. 348
HyperSQL CodeSwitcher ... 348
Building Documentation ... 349

D. HyperSQL with OpenOffice ... 352
HyperSQL with OpenOffice ... 352
Using OpenOffice / LibreOffice as a Database Tool .. 352
Converting .odb files to use with HyperSQL Server .. 352
OpenOffice / LibreOffice Extensions for HyperSQL .. 353

E. HyperSQL File Links .. 354
SQL Index ... 356
General Index .. 363

xi

List of Tables
1. Available formats of this document ... xiv
2.1. List of SQL types ... 15
4.1. TO_CHAR, TO_DATE and TO_TIMESTAMP format elements .. 107
14.1. Memory Database URL .. 288
14.2. File Database URL .. 288
14.3. Resource Database URL ... 289
14.4. Server Database URL .. 289
14.5. User and Password .. 290
14.6. Closing old ResultSet when Statement is reused .. 290
14.7. Column Names in JDBC ResultSet ... 291
14.8. In-memory LOBs from JDBC ResultSet .. 291
14.9. Empty batch in JDBC PreparedStatement .. 291
14.10. Automatic Shutdown .. 292
14.11. OpenOffice and Libre Office usage ... 292
14.12. Validity Check Property ... 293
14.13. Creating New Database Check Property ... 293
14.14. Execution of Multiple SQL Statements etc. .. 294
14.15. SQL Keyword Use as Identifier ... 294
14.16. SQL Keyword Starting with the Underscore or Containing Dollar Characters 294
14.17. Reference to Columns Names .. 294
14.18. String Size Declaration ... 294
14.19. Truncation of trailing spaces from string .. 295
14.20. Type Enforcement in Comparison and Assignment .. 295
14.21. Foreign Key Triggered Data Change ... 295
14.22. Use of LOB for LONGVAR Types .. 296
14.23. Type of string literals in CASE WHEN ... 296
14.24. Concatenation with NULL .. 296
14.25. NULL in Multi-Column UNIQUE Constraints .. 296
14.26. Truncation or Rounding in Type Conversion .. 296
14.27. Decimal Scale of Division and AVG Values ... 297
14.28. Support for NaN values .. 297
14.29. Sort order of NULL values ... 297
14.30. Sort order of NULL values with DESC ... 297
14.31. String Comparison with Padding .. 297
14.32. Default Locale Language Collation ... 298
14.33. Case-Insensitive Varchar columns ... 298
14.34. Lowercase column identifiers in ResultSet ... 298
14.35. Storage of Live Java Objects ... 298
14.36. Names of System Indexes Used for Constraints ... 298
14.37. DB2 Style Syntax .. 299
14.38. MSSQL Style Syntax ... 299
14.39. MySQL Style Syntax ... 299
14.40. Oracle Style Syntax ... 299
14.41. PostgreSQL Style Syntax .. 299
14.42. Maximum Iterations of Recursive Queries .. 300
14.43. Default Table Type .. 300
14.44. Transaction Control Mode ... 300
14.45. Default Isolation Level for Sessions .. 300
14.46. Transaction Rollback in Deadlock .. 300
14.47. Transaction Rollback on Interrupt ... 301
14.48. Time Zone and Interval Types ... 301

HyperSQL User Guide

xii

14.49. Temporary Result Rows in Memory ... 301
14.50. Opening Database as Read Only .. 301
14.51. Opening Database Without Modifying the Files .. 302
14.52. Event Logging .. 302
14.53. SQL Logging .. 302
14.54. Table Spaces for Cached Tables ... 302
14.55. Huge database files and tables ... 303
14.56. Use of NIO for Disk Table Storage .. 303
14.57. Use of NIO for Disk Table Storage .. 303
14.58. Internal Backup of the .data File ... 303
14.59. Unused Space Recovery ... 303
14.60. Rows Cached In Memory ... 304
14.61. Size of Rows Cached in Memory ... 304
14.62. Size Scale of Disk Table Storage ... 304
14.63. Size Scale of LOB Storage .. 304
14.64. Compression of BLOB and CLOB data ... 305
14.65. Use of Lock File ... 305
14.66. Logging Data Change Statements ... 305
14.67. Automatic Checkpoint Frequency ... 305
14.68. Automatic Defrag at Checkpoint .. 305
14.69. Compression of the .script file ... 306
14.70. Logging Data Change Statements Frequency .. 306
14.71. Logging Data Change Statements Frequency .. 306
14.72. Recovery Log Processing .. 306
14.73. Default Properties for TEXT Tables .. 307
14.74. Forcing Garbage Collection ... 307
14.75. Crypt Property For LOBs .. 307
14.76. Cipher Key for Encrypted Database .. 307
14.77. Cipher Initialization Vector for Encrypted Database ... 307
14.78. Crypt Provider Encrypted Database ... 307
14.79. Cipher Specification for Encrypted Database .. 308
14.80. Logging Framework ... 308
14.81. Text Tables .. 308
14.82. Java Functions .. 308
15.1. common server and webserver properties ... 310
15.2. server properties ... 311
15.3. webserver properties .. 311
17.1. Settings List ... 339

xiii

List of Examples
1.1. Java code to connect to the local hsql Server .. 5
1.2. Java code to connect to the local http Server ... 5
1.3. Java code to connect to the local secure SSL hsqls: and https: Servers .. 6
1.4. specifying a connection property to shutdown the database when the last connection is closed 7
1.5. specifying a connection property to disallow creating a new database ... 8
3.1. inserting the next sequence value into a table row .. 40
3.2. numbering returned rows of a SELECT in sequential order .. 40
3.3. using the last value of a sequence ... 40
3.4. Column values which satisfy a 2-column UNIQUE constraint ... 43
6.1. User-defined Session Variables ... 166
6.2. User-defined Temporary Session Tables .. 166
6.3. Setting Transaction Characteristics ... 172
6.4. Locking Tables ... 173
6.5. Rollback .. 174
6.6. Setting Session Characteristics .. 174
6.7. Setting Session Authorization .. 175
6.8. Setting Session Time Zone ... 175
11.1. Using CACHED tables for the LOB schema .. 233
11.2. Creating a system-versioned table .. 238
11.3. Displaying DbBackup Syntax .. 241
11.4. Offline Backup Example .. 241
11.5. Listing a Backup with DbBackup ... 242
11.6. Restoring a Backup with DbBackup ... 242
11.7. SQL Log Example .. 252
11.8. Finding foreign key rows with no parents after a bulk import .. 264
12.1. Using CACHED tables for the LOB schema .. 272
12.2. MainInvoker Example .. 275
12.3. Sample Range Ivy Dependency ... 280
12.4. Sample Range Maven Dependency ... 280
12.5. Sample Range Gradle Dependency ... 280
12.6. Sample Range ivy.xml loaded by Ivyxml plugin ... 280
12.7. Sample Range Groovy Dependency, using Grape .. 280
15.1. Exporting certificate from the server's keystore ... 314
15.2. Adding a certificate to the client keystore .. 314
15.3. Specifying your own trust store to a JDBC client .. 314
15.4. Getting a pem-style private key into a JKS keystore .. 315
15.5. Validating and Testing an ACL file .. 317
16.1. example sqltool.rc stanza .. 328
C.1. Buiding the standard HSQLDB jar file with Ant .. 348
C.2. Example source code before CodeSwitcher is run ... 349
C.3. CodeSwitcher command line invocation ... 349
C.4. Source code after CodeSwitcher processing ... 349

xiv

Preface
HyperSQL DataBase (HSQLDB) is a modern relational database system that conforms closely to the SQL:2016
Standard and JDBC 4.2 specifications. It supports all core features and many optional features of SQL:2016.

The first versions of HSQLDB were released in 2001. Version 2, first released in 2010, was a complete rewrite of
most parts of the database engine.

This documentation covers HyperSQL version 2.7.1 and has been regularly improved and updated. The latest, updated
version can be found at http://hsqldb.org/doc/2.0/

If you notice any mistakes in this document, or if you have problems with the procedures themselves, please use the
HSQLDB support facilities which are listed at http://hsqldb.org/support

Available formats for this document
This document is available in several formats.

You may be reading this document right now at http://hsqldb.org/doc/2.0, or in a distribution somewhere else. I hereby
call the document distribution from which you are reading this, your current distro.

http://hsqldb.org/doc/2.0 hosts the latest production versions of all available formats. If you want a different format of
the same version of the document you are reading now, then you should try your current distro. If you want the latest
production version, you should try http://hsqldb.org/doc/2.0.

Sometimes, distributions other than http://hsqldb.org/doc/2.0 do not host all available formats. So, if you can't access
the format that you want in your current distro, you have no choice but to use the newest production version at http://
hsqldb.org/doc/2.0.

Table 1. Available formats of this document

format your distro at http://hsqldb.org/doc/2.0

Chunked HTML index.html http://hsqldb.org/doc/2.0/guide/

All-in-one HTML guide.html http://hsqldb.org/doc/2.0/guide/guide.html

PDF guide.pdf http://hsqldb.org/doc/2.0/guide/guide.pdf

If you are reading this document now with a standalone PDF reader, your distro links may not work.

index.html
http://hsqldb.org/doc/2.0/guide/
guide.html
http://hsqldb.org/doc/2.0/guide/guide.html
http://hsqldb.org/doc/2.0/guide/guide.pdf

1

Chapter 1. Running and Using HyperSQL

Fred Toussi, The HSQL Development Group
$Revision: 6621 $

Copyright 2002-2022 Fred Toussi. Permission is granted to distribute this document without any alteration
under the terms of the HSQLDB license. Additional permission is granted to the HSQL Development Group
to distribute this document with or without alterations under the terms of the HSQLDB license.
2022-10-20

Introduction
HyperSQL Database (HSQLDB) is a modern relational database system. Version 2.7.1 is the latest release of the
all-new version 2 code. Written from ground up to follow the international ISO SQL:2016 standard, it supports the
complete set of the classic features, together with optional features such as stored procedures and triggers.

HyperSQL version 2.7.1 is compatible with Java 11 or later and supports the Java module system. A version of the
HSQLDB jar compiled with JDK 8 is also included in the download zip package. A version of the jar compiled with
JDK 6 is also available at hsqldb.org.

HyperSQL is used for development, testing and deployment of database applications.

SQL Standard compliance is the most unique characteristic of HyperSQL. There are several other distinctive features.
HyperSQL can provide database access within the user's application process, within an application server, or as a
separate server process. HyperSQL can run entirely in memory using a fast memory structure. HyperSQL can use
disk persistence in a flexible way, with reliable crash-recovery. HyperSQL is the only open-source relational database
management system with a high-performance dedicated lob storage system, suitable for gigabytes of lob data. It is
also the only relational database that can create and access large comma delimited files as SQL tables. HyperSQL
supports three live switchable transaction control models, including fully multi-threaded MVCC, and is suitable for
high performance transaction processing applications. HyperSQL is also suitable for business intelligence, ETL and
other applications that process large data sets. HyperSQL has a wide range of enterprise deployment options, such as
XA transactions, connection pooling data sources and remote authentication.

New SQL syntax compatibility modes have been added to HyperSQL. These modes allow a high degree of
compatibility with several other database systems which use non-standard SQL syntax.

HyperSQL is written in the Java programming language and runs in a Java virtual machine (JVM). It supports the
JDBC interface for database access.

An ODBC driver is also available as a separate download.

This guide covers the database engine features, SQL syntax and different modes of operation. The JDBC interfaces,
pooling and XA components are documented in the JavaDoc. Utilities such as SqlTool and DatabaseManagerSwing
are covered in a separate Utilities Guide.

The HSQLDB Jar
The HSQLDB jar package, hsqldb.jar, is located in the /lib directory of the ZIP package and contains several
components and programs.

Components of the HSQLDB jar package

• HyperSQL RDBMS Engine (HSQLDB)

Running and Using HyperSQL

2

• HyperSQL JDBC Driver

• DatabaseManagerSwing GUI database access tool

The HyperSQL RDBMS and JDBC Driver provide the core functionality. DatabaseManagerSwing is a database access
tool that can be used with any database engine that has a JDBC driver.

An additional jar, sqltool.jar, contains Sql Tool, a command line database access tool that can also be used with other
database engines.

Running Database Access Tools
The access tools are used for interactive user access to databases, including creation of a database, inserting or
modifying data, or querying the database. All tools are run in the normal way for Java programs. In the following
example the Swing version of the Database Manager is executed. The hsqldb.jar is located in the directory ../
lib relative to the current directory.

 java -cp ../lib/hsqldb.jar org.hsqldb.util.DatabaseManagerSwing

If hsqldb.jar is in the current directory, the command would change to:

 java -cp hsqldb.jar org.hsqldb.util.DatabaseManagerSwing

Main class for the HSQLDB tools

• org.hsqldb.util.DatabaseManagerSwing

When a tool is up and running, you can connect to a database (may be a new database) and use SQL commands to
access and modify the data.

Tools can use command line arguments. You can add the command line argument --help to get a list of available
arguments for these tools.

Double clicking the HSQLDB jar will start the DatabaseManagerSwing application.

A HyperSQL Database
Each HyperSQL database is called a catalog. There are three types of catalog depending on how the data is stored.

Types of catalog data

• mem: stored entirely in RAM - without any persistence beyond the JVM process's life

• file: stored in file system

• res: stored in a Java resource, such as a Jar and always read-only

All-in-memory mem: catalogs can be used for test data or as sophisticated caches for an application. These databases
do not have any files.

A file: catalog consists of between 2 to 6 files, all named the same but with different extensions, located in the same
directory. For example, the database named "testdb" consists of the following files:

• testdb.properties

• testdb.script

Running and Using HyperSQL

3

• testdb.log

• testdb.data

• testdb.backup

• testdb.lobs

The properties file contains a few settings about the database. The script file contains the definition of tables and
other database objects, plus the data for memory tables. The log file contains recent changes to the database. The
data file contains the data for cached tables and the backup file is used to revert to the last known consistent state
of the data file. All these files are essential and should never be deleted. For some catalogs, the testdb.data and
testdb.backup files will not be present. In addition to those files, a HyperSQL database may link to any formatted
text files, such as CSV lists, anywhere on the disk.

While the "testdb" catalog is open, a testdb.log file is used to write the changes made to data. This file is removed
at a normal SHUTDOWN. Otherwise (with abnormal shutdown) this file is used at the next startup to redo the changes.
A testdb.lck file is also used to record the fact that the database is open. This is deleted at a normal SHUTDOWN.

Note

When the engine closes the database at a shutdown, it creates temporary files with the extension .new
which it then renames to those listed above. These files should not be deleted by the user. At the time of
the next startup, all such files will be renamed or deleted by the database engine. In some circumstances,
a testdb.data.xxx.old is created and deleted afterwards by the database engine. The user can
delete these testdb.data.xxx.old files.

A res: catalog consists of the files for a small, read-only database that can be stored inside a Java resource such as a
ZIP or JAR archive and distributed as part of a Java application program.

In-Process Access to Database Catalogs
In general, JDBC is used for all access to databases. This is done by making a connection to the database, then using
various methods of the java.sql.Connection object that is returned to access the data. Access to an in-process
database is started from JDBC, with the database path specified in the connection URL. For example, if the file:
database name is "testdb" and its files are located in the same directory as where the command to run your application
was issued, the following code is used for the connection:

 Connection c = DriverManager.getConnection("jdbc:hsqldb:file:testdb", "SA", "");

The database file path format can be specified using forward slashes in Windows hosts as well as Linux hosts. So
relative paths or paths that refer to the same directory on the same drive can be identical. For example if your database
directory in Linux is /opt/db/ containing a database testdb (with files named testdb.*), then the database file
path is /opt/db/testdb. If you create an identical directory structure on the C: drive of a Windows host, you can
use the same URL in both Windows and Linux:

 Connection c = DriverManager.getConnection("jdbc:hsqldb:file:/opt/db/testdb", "SA", "");

When using relative paths, these paths will be taken relative to the directory in which the shell command to start the
Java Virtual Machine was executed. Refer to the Javadoc for JDBCConnection for more details.

Paths and database names for file databases are treated as case-sensitive when the database is created or the first
connection is made to the database. But if a second connection is made to an open database, using a path and name
that differs only in case, then the connection is made to the existing open database. This measure is necessary because
in Windows the two paths are equivalent.

Running and Using HyperSQL

4

A mem: database is specified by the mem: protocol. For mem: databases, the path is simply a name. Several mem:
databases can exist at the same time and distinguished by their names. In the example below, the database is called
"mymemdb":

 Connection c = DriverManager.getConnection("jdbc:hsqldb:mem:mymemdb", "SA", "");

A res: database, is specified by the res: protocol. As it is a Java resource, the database path is a Java URL (similar to the
path to a class). In the example below, "resdb" is the root name of the database files, which exists in the directory "org/
my/path" within the classpath (probably in a Jar). A Java resource is stored in a compressed format and is decompressed
in memory when it is used. For this reason, a res: database should not contain large amounts of data and is always
read-only.

 Connection c = DriverManager.getConnection("jdbc:hsqldb:res:org.my.path.resdb", "SA", "");

The first time in-process connection is made to a database, some general data structures are initialised and a helper
thread is started. After this, creation of connections and calls to JDBC methods of the connections execute as if they
are part of the Java application that is making the calls. When the SQL command "SHUTDOWN" is executed, the
global structures and helper thread for the database are destroyed.

Note that only one Java process at a time can make in-process connections to a given file: database. However, if the
file: database has been made read-only, or if connections are made to a res: database, then it is possible to make in-
process connections from multiple Java processes.

Server Modes
For most applications, in-process access is faster, as the data is not converted and sent over the network. The main
drawback is that it is not possible by default to connect to the database from outside your application. As a result
you cannot check the contents of the database with external tools such as Database Manager while your application
is running.

Server modes provide the maximum accessibility. The database engine runs in a JVM and opens one or more in-
process catalogs. It listens for connections from programs on the same computer or other computers on the network.
It translates these connections into in-process connections to the databases.

Several different programs can connect to the server and retrieve or update information. Applications programs (clients)
connect to the server using the HyperSQL JDBC driver. In most server modes, the server can serve an unlimited number
of databases that are specified at the time of running the server, or optionally, as a connection request is received.

A Sever mode is also the preferred mode of running the database during development. It allows you to query the
database from a separate database access utility while your application is running.

There are three server modes, based on the protocol used for communications between the client and server. They are
briefly discussed below. More details on servers is provided in the HyperSQL Network Listeners (Servers) chapter.

HyperSQL HSQL Server

This is the preferred way of running a database server and the fastest one. A proprietary communications protocol is
used for this mode. A command similar to those used for running tools and described above is used for running the
server. The following example of the command for starting the server starts the server with one (default) database with
files named "mydb.*" and the public name of "xdb". The public name hides the file names from users.

 java -cp ../lib/hsqldb.jar org.hsqldb.server.Server --database.0 file:mydb --dbname.0 xdb

The command line argument --help can be used to get a list of available arguments. Connections are made using
an hsql: URL.

Running and Using HyperSQL

5

 Connection c = DriverManager.getConnection("jdbc:hsqldb:hsql://localhost/xdb", "SA", "");

HyperSQL HTTP Server

This method of access is used when the computer hosting the database server is restricted to the HTTP protocol. The
only reason for using this method of access is restrictions imposed by firewalls on the client or server machines and it
should not be used where there are no such restrictions. The HyperSQL HTTP Server is a special web server that allows
JDBC clients to connect via HTTP. The server can also act as a small general-purpose web server for static pages.

To run an HTTP server, replace the main class for the server in the example command line above with WebServer:

 java -cp ../lib/hsqldb.jar org.hsqldb.server.WebServer --database.0 file:mydb --dbname.0 xdb

The command line argument --help can be used to get a list of available arguments. Connections are made using
an http: URL.

 Connection c = DriverManager.getConnection("jdbc:hsqldb:http://localhost/xdb", "SA", "");

HyperSQL HTTP Servlet

This method of access also uses the HTTP protocol. It is used when a servlet engine (or application server) such
as Tomcat or Resin provides access to the database. The Servlet Mode cannot be started independently from the
servlet engine. The Servlet class, in the HSQLDB jar, should be installed on the application server to provide the
connection. The database file path is specified using an application server property. Refer to the source file src/
org/hsqldb/server/Servlet.java to see the details.

Both HTTP Server and Servlet modes can be accessed using the JDBC driver at the client end. They do not provide
a web front end to the database. The Servlet mode can serve multiple databases.

Please note that you do not normally use this mode if you are using the database engine in an application server. In
this situation, connections to a catalog are usually made in-process, or using the hsql: protocol to an HSQL Server

Connecting to a Database Server

When a HyperSQL server is running, client programs can connect to it using the HSQLDB JDBC Driver contained
in hsqldb.jar. Full information on how to connect to a server is provided in the Java Documentation for
JDBCConnection (located in the /doc/apidocs directory of HSQLDB distribution). A common example is
connection to the default port (9001) used for the hsql: protocol on the same machine:

Example 1.1. Java code to connect to the local hsql Server

 try {
 Class.forName("org.hsqldb.jdbc.JDBCDriver");
 } catch (Exception e) {
 System.err.println("ERROR: failed to load HSQLDB JDBC driver.");
 e.printStackTrace();
 return;
 }

 Connection c = DriverManager.getConnection("jdbc:hsqldb:hsql://localhost/xdb", "SA", "");

If the HyperSQL HTTP server is used, the protocol is http: and the URL will be different:

Example 1.2. Java code to connect to the local http Server

 Connection c = DriverManager.getConnection("jdbc:hsqldb:http://localhost/xdb", "SA", "");

Running and Using HyperSQL

6

Note in the above connection URL, there is no mention of the database file, as this was specified when running the
server. Instead, the public name defined for dbname.0 is used. Also, see the HyperSQL Network Listeners (Servers)
chapter for the connection URL when there is more than one database per server instance.

Security Considerations
When a HyperSQL server is run, network access should be adequately protected. Source IP addresses may be restricted
by use of our Access Control List feature , network filtering software, firewall software, or standalone firewalls. Only
secure passwords should be used-- most importantly, the password for the default system user should be changed
from the default empty string. If you are purposefully providing data to the public, then the wide-open public network
connection should be used exclusively to access the public data via read-only accounts. (i.e., neither secure data nor
privileged accounts should use this connection). These considerations also apply to HyperSQL servers run with the
HTTP protocol.

HyperSQL provides two optional security mechanisms. The encrypted SSL protocol , and Access Control Lists .
Both mechanisms can be specified when running the Server or WebServer. On the client, the URL to connect to an
SSL server is slightly different:

Example 1.3. Java code to connect to the local secure SSL hsqls: and https: Servers

 Connection c = DriverManager.getConnection("jdbc:hsqldb:hsqls://localhost/xdb", "SA", "");
 Connection c = DriverManager.getConnection("jdbc:hsqldb:https://localhost/xdb", "SA", "");

The security features are discussed in detail in the HyperSQL Network Listeners (Servers) chapter.

Using Multiple Databases
A server can provide connections to more than one database. In the examples above, more than one set of database
names can be specified on the command line. It is also possible to specify all the databases in a .properties file,
instead of the command line. These capabilities are covered in the HyperSQL Network Listeners (Servers) chapter

Accessing the Data
As shown so far, a java.sql.Connection object is always used to access the database. But performance depends
on the type of connection and how it is used.

Establishing a connection and closing it has some overheads, therefore it is not good practice to create a new connection
to perform a small number of operations. A connection should be reused as much as possible and closed only when
it is not going to be used again for a long while.

Reuse is more important for server connections. A server connection uses a TCP port for communications. Each time
a connection is made, a port is allocated by the operating system and deallocated after the connection is closed. If
many connections are made from a single client, the operating system may not be able to keep up and may refuse
the connection attempt.

A java.sql.Connection object has some methods that return further java.sql.* objects. All these objects
belong to the connection that returned them and are closed when the connection is closed. These objects, listed below,
can be reused. But if they are not needed after performing the operations, they should be closed.

A java.sql.DatabaseMetaData object is used to get metadata for the database.

A java.sql.Statement object is used to execute queries and data change statements. A single
java.sql.Statement can be reused to execute a different statement each time.

A java.sql.PreparedStatement object is used to execute a single statement repeatedly. The SQL
statement usually contains parameters, which can be set to new values before each reuse. When a

Running and Using HyperSQL

7

java.sql.PreparedStatement object is created, the engine keeps the compiled SQL statement for
reuse, until the java.sql.PreparedStatement object is closed. As a result, repeated use of a
java.sql.PreparedStatement is much faster than using a java.sql.Statement object.

A java.sql.CallableStatement object is used to execute an SQL CALL statement. The SQL
CALL statement may contain parameters, which should be set to new values before each reuse. Similar
to java.sql.PreparedStatement, the engine keeps the compiled SQL statement for reuse, until the
java.sql.CallableStatement object is closed.

A java.sql.Connection object also has some methods for transaction control.

The commit() method performs a COMMIT while the rollback() method performs a ROLLBACK SQL statement.

The setSavepoint(String name) method performs a SAVEPOINT <name> SQL statement and returns
a java.sql.Savepoint object. The rollback(Savepoint name) method performs a ROLLBACK TO
SAVEPOINT <name> SQL statement.

The Javadoc for JDBCConnection , JDBCDriver , JDBCDatabaseMetadata JDBCResultSet
, JDBCStatement , JDBCPreparedStatement list all the supported JDBC methods together with
information that is specific to HSQLDB.

Closing the Database
All databases running in different modes can be closed with the SHUTDOWN command, issued as an SQL statement.

When SHUTDOWN is issued, all active transactions are rolled back. The catalog files are then saved in a form that
can be opened quickly the next time the catalog is opened.

A special form of closing the database is via the SHUTDOWN COMPACT command. This command rewrites the
.data file that contains the information stored in CACHED tables and compacts it to its minimum size. This command
should be issued periodically, especially when lots of inserts, updates, or deletes have been performed on the cached
tables. Changes to the structure of the database, such as dropping or modifying populated CACHED tables or indexes
also create large amounts of unused file space that can be reclaimed using this command.

Databases are not closed when the last connection to the database is explicitly closed via JDBC. A connection property,
shutdown=true, can be specified on the first connection to the database (the connection that opens the database)
to force a shutdown when the last connection closes.

Example 1.4. specifying a connection property to shutdown the database when the last
connection is closed

 Connection c = DriverManager.getConnection(
 "jdbc:hsqldb:file:/opt/db/testdb;shutdown=true", "SA", "");

This feature is useful for running tests, where it may not be practical to shutdown the database after each test. But it
is not recommended for application programs.

Creating a New Database
When a server instance is started, or when a connection is made to an in-process database, a new, empty database is
created if no database exists at the given path.

With HyperSQL 2.0 the user name and password that are specified for the connection are used for the new database.
Both the user name and password are case-sensitive. (The exception is the default SA user, which is not case-sensitive).
If no user name or password is specified, the default SA user and an empty password are used.

Running and Using HyperSQL

8

This feature has a side effect that can confuse new users. If a mistake is made in specifying the path for connecting
to an existing database, a connection is nevertheless established to a new database. For troubleshooting purposes, you
can specify a connection property ifexists=true to allow connection to an existing database only and avoid creating
a new database. In this case, if the database does not exist, the getConnection() method will throw an exception.

Example 1.5. specifying a connection property to disallow creating a new database

 Connection c = DriverManager.getConnection(
 "jdbc:hsqldb:file:/opt/db/testdb;ifexists=true", "SA", "");

A database has many optional properties, described in the System Management chapter. You can specify most of
these properties on the URL or in the connection properties for the first connection that creates the database. See the
Properties chapter.

9

Chapter 2. SQL Language

Fred Toussi, The HSQL Development Group
$Revision: 6621 $

Copyright 2002-2022 Fred Toussi. Permission is granted to distribute this document without any alteration
under the terms of the HSQLDB license. Additional permission is granted to the HSQL Development Group
to distribute this document with or without alterations under the terms of the HSQLDB license.
2022-10-20

SQL Standards Support
The SQL language consists of statements for different operations. HyperSQL 2.x supports the dialect of SQL defined
progressively by ISO (also ANSI) SQL standards 92, 1999, 2003, 2008, 2011 and 2016. This means the syntax specified
by the Standard text is accepted for any supported operation. Almost all features of SQL-92 up to Advanced Level
are supported, as well as the additional features that make up the SQL:2016 core and many optional features of this
standard.

At the time of this release, HyperSQL supports the widest range of SQL Standard features among all open source
RDBMS.

Various chapters of this guide list the supported syntax. When writing or converting existing SQL DDL (Data
Definition Language), DML (Data Manipulation Language) or DQL (Data Query Language) statements for HSQLDB,
you should consult the supported syntax and modify the statements accordingly.

Over 300 words are reserved by the Standard and should not be used as table or column names. For
example, the word POSITION is reserved as it is a function defined by the Standards with a similar role as
String::indexOf(String) in Java. By default, HyperSQL does not prevent you from using a reserved word if
it does not support its use or can distinguish it. For example, CUBE is a reserved word for a feature that is supported
by HyperSQL from version 2.5.1. Before this version, CUBE was allowed as a table or column name, but it is no
longer allowed. You should avoid using such names as future versions of HyperSQL are likely to support the reserved
words and may reject your table definitions or queries. The full list of SQL reserved words is in the appendix Lists of
Keywords . You can set a property to disallow the use of reserved keywords for names of tables and other database
objects. There are several other user-defined properties to control the strict application of the SQL Standard in different
areas.

If you have to use a reserved keyword as the name of a database object, you can enclose it in double quotes.

HyperSQL also supports enhancements with keywords and expressions that are not part of the SQL standard.
Expressions such as SELECT TOP 5 FROM .., SELECT LIMIT 0 10 FROM ... or DROP TABLE mytable
IF EXISTS are among such constructs.

Many books cover SQL Standard syntax and can be consulted.

In HyperSQL version 2, all features of JDBC4 that apply to the capabilities of HSQLDB are fully supported. The
relevant JDBC classes are thoroughly documented with additional clarifications and HyperSQL specific comments.
See the JavaDoc for the org.hsqldb.jdbc.* classes.

The following sections list the keywords that start various SQL statements grouped by their function.

SQL Language

10

Definition Statements (DDL and others)
Definition statements create, modify, or remove database objects. Tables and views are objects that contain data. There
are other types of objects that do not contain data. These statements are covered in the Schemas and Database Objects
chapter.

CREATE

Followed by { SCHEMA | TABLE | VIEW | SEQUENCE | PROCEDURE | FUNCTION | USER | ROLE | ... }, the
keyword is used to create the database objects.

ALTER

Followed by the same keywords as CREATE, the keyword is used to modify the object.

DROP

Followed by the same keywords as above, the keyword is used to remove the object. If the object contains data, the
data is removed too.

GRANT

Followed by the name of a role or privilege, the keyword assigns a role or gives permissions to a USER or role.

REVOKE

Followed by the name of a role or privilege, REVOKE is the opposite of GRANT.

COMMENT ON

Followed by the same keywords as CREATE, the keyword is used to add a text comment to TABLE, VIEW,
COLUMN, ROUTINE, and TRIGGER objects.

EXPLAIN REFERENCES

These keywords are followed by TO or FROM to list the other database objects that reference the given object, or
vice versa.

DECLARE

This is used for declaring temporary session tables and variables.

Data Manipulation Statements (DML)
Data manipulation statements add, update, or delete data in tables and views. These statements are covered in the Data
Access and Change chapter.

INSERT

Inserts one or more rows into a table or view.

UPDATE

Updates one or more rows in a table or view.

DELETE

Deletes one or more rows from a table or view.

SQL Language

11

TRUNCATE

Deletes all the rows in a table.

MERGE

Performs a conditional INSERT, UPDATE or DELETE on a table or view using the data given in the statement.

Data Query Statements (DQL)
Data query statements retrieve and combine data from tables and views and return result sets. These statements are
covered in the Data Access and Change chapter.

SELECT

Returns a result set formed from a subset of rows and columns in one or more tables or views.

VALUES

Returns a result set formed from constant values.

WITH ...

This keyword starts a series of SELECT statements that form a query. The first SELECTs act as subqueries for the
final SELECT statement in the same query.

EXPLAIN PLAN

These keywords are followed by the full text of any DQL or DML statement. The result set shows the anatomy of the
given DQL or DML statement, including the indexes used to access the tables.

Calling User Defined Procedures and Functions
CALL

Calls a procedure or function. Calling a function can return a result set or a value, while calling a procedure can return
one or more result sets and values at the same time. This statement is covered in the SQL-Invoked Routines chapter.

Setting Properties for the Database and the Session
SET

The SET statement has many variations and is used for setting the values of the general properties of the database
or the current session. Usage of the SET statement for the database is covered in the System Management chapter.
Usage for the session is covered in the Sessions and Transactions chapter.

General Operations on Database
General operations on the database include backup, checkpoint, and other operations. These statements are covered
in detail in the System Management chapter.

BACKUP

Creates a backup of the database in a target directory.

PERFORM

SQL Language

12

Includes commands to export and import SQL scripts from / to the database. Also includes a command to check the
consistency of the indexes.

SCRIPT

Creates a script of SQL statements that creates the database objects and settings.

CHECKPOINT

Saves all the changes to the database up to this point to disk files.

SHUTDOWN

Shuts down the database after saving all the changes.

Transaction Statements
These statements are used in a session to start, end or control transactions. They are covered in the Sessions and
Transactions chapter.

START TRANSACTION

This statement initiates a new transaction with the given transaction characteristics

SET TRANSACTION

Introduces one of more characteristics for the next transaction.

COMMIT

Commits the changes to data made in the current transaction.

ROLLBACK

Rolls back the changes to data made in the current transaction. It is also possible to roll back to a savepoint.

SAVEPOINT

Records a point in the current transaction so that future changes can be rolled back to this point.

RELEASE SAVEPOINT

Releases an existing savepoint.

LOCK

Locks a set of tables for transaction control.

CONNECT

Starts a new session and continues operations in this session.

DISCONNECT

Ends the current session.

Comments in Statements
Any SQL statement can include comments. The comments are stripped before the statement is executed.

SQL Language

13

SQL style line comments start with two dashes -- and extend to the end of the line.

C style comments can cover part of the line or multiple lines. They start with /* and end with */.

Statements in SQL Routines
The body of user-defined SQL procedures and functions (collectively called routines) may contain several other types
of statements and keywords in addition to DML and DQL statements. These include: BEGIN and END for blocks;
FOR, WHILE and REPEAT loops; IF, ELSE and ELSEIF blocks; SIGNAL and RESIGNAL statements for handling
exceptions.

These statements are covered in detail in the SQL-Invoked Routines chapter.

SQL Data and Tables
All data is stored in tables. Therefore, creating a database requires defining the tables and their columns. The SQL
Standard supports temporary tables, which are for temporary data managed by each session, and permanent base tables,
which are for persistent data shared by different sessions.

A HyperSQL database can be an all-in-memory mem: database with no automatic persistence, or a file-based, persistent
file: database.

Case Sensitivity
Standard SQL is not case sensitive, except when names of objects are enclosed in double-quotes. SQL keywords can
be written in any case; for example, sElect, SELECT and select are all allowed and converted to uppercase.
Identifiers, such as names of tables, columns and other objects defined by the user, are also converted to uppercase.
For example, myTable, MyTable and MYTABLE all refer to the same table and are stored in the database in the
case-normal form, which is all uppercase for unquoted identifiers. When the name of an object is enclosed in double
quotes when it is created, the exact name is used as the case-normal form and it must be referenced with the exact
same double-quoted string. For example, "myTable" and "MYTABLE" are different tables. When the double-quoted
name is all-uppercase, it can be referenced in any case; "MYTABLE" is the same as myTable and MyTable because
they are all converted to MYTABLE.

Persistent Tables
HyperSQL supports the Standard definition of persistent base table, but defines three types according to the way the
data is stored. These are MEMORY tables, CACHED tables, and TEXT tables.

Memory tables are the default type when the CREATE TABLE command is used. Their data is held entirely in memory.
In file-based databases, MEMORY tables are persistent and any change to their structure or contents is written to the
*.log and *.script files. The *.script file and the *.log file are read the next time the database is opened,
and the MEMORY tables are recreated with all the data. This process may take a long time if the database is larger
than tens of megabytes. When the database is shutdown, all the data is saved.

CACHED tables are created with the CREATE CACHED TABLE command. Only part of their data or indexes is
held in memory, allowing large tables that would otherwise take up to several hundred megabytes of memory. Another
advantage of cached tables is that the database engine takes less time to start up when a cached table is used for large
amounts of data. The disadvantage of cached tables is a reduction in speed. Do not use cached tables if your data
set is relatively small. In an application with some small tables and some large ones, it is better to use the default,
MEMORY mode for the small tables.

TEXT tables use a CSV (Comma Separated Value) or other delimited text file as the source of their data. You can
specify an existing CSV file, such as a dump from another database or program, as the source of a TEXT table.

SQL Language

14

Alternatively, you can specify an empty file to be filled with data by the database engine. TEXT tables are efficient in
memory usage as they cache only part of the text data and all of the indexes. The Text table data source can always
be reassigned to a different file if necessary. The commands are needed to set up a TEXT table as detailed in the Text
Tables chapter.

With all-in-memory mem: databases, both MEMORY table and CACHED table declarations are treated as declarations
for MEMORY tables which last only for the duration of the Java process. In the latest versions of HyperSQL, TEXT
table declarations are allowed in all-in-memory databases.

The default type of tables resulting from future CREATE TABLE statements can be specified with the SQL command:

 SET DATABASE DEFAULT TABLE TYPE { CACHED | MEMORY };

The type of an existing table can be changed with the SQL command:

 SET TABLE <table name> TYPE { CACHED | MEMORY };

SQL statements such as INSERT or SELECT access different types of tables uniformly. No change to statements is
needed to access different types of table.

Temporary Tables

Data in TEMPORARY tables is not saved and lasts only for the lifetime of the session. The contents of each TEMP
table are visible only from the session that is used to populate it.

HyperSQL supports two types of temporary tables.

The GLOBAL TEMPORARY type is a schema object. It is created with the CREATE GLOBAL TEMPORARY TABLE
statement. The definition of the table persists, and each session has access to the table. But each session sees its own
copy of the table, which is empty at the beginning of the session.

The LOCAL TEMPORARY type is not a schema object. It is created with the DECLARE LOCAL TEMPORARY TABLE
statement. The table definition lasts only for the duration of the session and is not persisted in the database. The table
can be declared in the middle of a transaction without committing the transaction. If a schema name is needed to
reference these tables in a given SQL statement, the pseudo schema name SESSION can be used.

When the session commits, the contents of all temporary tables are cleared by default. If the table definition statement
includes ON COMMIT PRESERVE ROWS, then the contents are kept when a commit takes place.

The rows in temporary tables are stored in memory by default. If the hsqldb.result_max_memory_rows
property has been set or the SET SESSION RESULT MEMORY ROWS <row count> has been specified, tables
with row count above the setting are stored on disk.

Short Guide to Data Types
The SQL Standard is strongly typed and completely type-safe. It supports the following basic types, which are all
supported by HyperSQL.

• Numeric types TINYINT, SMALLINT, INTEGER and BIGINT are types with fixed binary precision. These types
are more efficient to store and retrieve. NUMERIC and DECIMAL are types with user-defined decimal precision.
They can be used with zero scale to store very large integers, or with a non-zero scale to store decimal fractions. The
DOUBLE type is a 64-bit, approximate floating point types. HyperSQL even allows you to store infinity in this type.

• The BOOLEAN type is for logical values and can hold TRUE, FALSE or UNKNOWN. Although HyperSQL allows
you to use one and zero in assignment or comparison, you should use the standard values for this type.

SQL Language

15

• Character string types are CHAR(L), VARCHAR(L) and CLOB (here, L stands for length parameter, an integer).
CHAR is for fixed width strings and any string that is assigned to this type is padded with spaces at the end. If you use
CHAR without the length L, then it is interpreted as a single character string. Do not use this type for general storage
of strings. Use VARCHAR(L) for general strings. There are only memory limits and performance implications for
the maximum length of VARCHAR(L). If the strings are larger than a few kilobytes, consider using CLOB. The
CLOB types is a better choice for very long strings. Do not use this type for short strings as there are performance
implications. By default LONGVARCHAR is a synonym for a long VARCHAR and can be used without specifying
the size. You can set LONGVARCHAR to map to CLOB, with the sql.longvar_is_lob connection property
or the SET DATABASE SQL LONGVAR IS LOB TRUE statement.

• Binary string types are BINARY(L), VARBINARY(L) and BLOB. Do not use BINARY(L) unless you are storing
fixed length strings such as UUID. This type pads short binary strings with zero bytes. BINARY without the length
L means a single byte. Use VARBINARY(L) for general binary strings, and BLOB for large binary objects. You
should apply the same considerations as with the character string types. By default, LONGVARBINARY is a
synonym for a long VARBINARY and can be used without specifying the size. You can set LONGVARBINARY to
map to BLOB, with the sql.longvar_is_lob connection property or the SET DATABASE SQL LONGVAR
IS LOB TRUE statement.

• The BIT(L) and BITVARYING(L) types are for bit maps. Do not use them for other types of data. BIT without the
length L argument means a single bit and is sometimes used as a logical type. Use BOOLEAN instead of this type.

• The UUID type is for UUID (also called GUID) values. The value is stored as BINARY. UUID character strings,
as well as BINARY strings, can be used to insert or to compare.

• The datetime types DATE, TIME, and TIMESTAMP, together with their WITH TIME ZONE variations are
available. Read the details in this chapter on how to use these types.

• The INTERVAL type is very powerful when used together with the datetime types. This is very easy to use, but is
supported mainly by enterprise database systems. Note that functions that add days or months to datetime values are
not really a substitute for the INTERVAL type. Expressions such as (datecol - 7 DAY) > CURRENT_DATE
are optimised to use indexes when it is possible, while the equivalent function calls are not optimised.

• The OTHER type is for storage of Java objects. If your objects are large, serialize them in your application and
store them as BLOB in the database.

• The ARRAY type supports all base types except LOB and OTHER types. ARRAY data objects are held in memory
while being processed. It is therefore not recommended to store more than about a thousand objects in an ARRAY
in normal operations with disk-based databases. For specialised applications, use ARRAY with as many elements
as your memory allocation can support.

HyperSQL 2.7 has several compatibility modes which allow the type names that are used by other RDBMS to be
accepted and translated into the closest SQL Standard type. For example, the type TEXT, supported by MySQL and
PostgreSQL is translated in these compatibility modes.

Table 2.1. List of SQL types

Type Description

TINYINT, SMALLINT, INT or
INTEGER, BIGNIT

binary number types with 8, 16, 32, 64 bit precision respectively

DOUBLE or FLOAT 64 bit precision floating point number

DECIMAL(P,S), DEC(P,S) or
NUMERIC(P,S)

identical types for fixed precision number (*)

BOOLEAN boolean type supports TRUE, FALSE and UNKNOWN

SQL Language

16

Type Description

CHAR(L) or CHARACTER(L) fixed-length UTF-16 string type - padded with space to length L (**)

VARCHCHAR(L) or
CHARACTER VARYING(L)

variable-length UTF-16 string type (***)

CLOB(L) variable-length UTF-16 long string type (***)

LONGVARCHAR(L) a non-standard synonym for VARCHAR(L) (***)

BINARY(L) fixed-length binary string type - padded with zero to length L (**)

VARBINARY(L) or BINARY
VARYING(L)

variable-length binary string type (***)

BLOB(L) variable length binary string type (***)

LONGVARBINARY(L) a non-standard synonym for VARBINARY(L) (***)

BIT(L) fixed-length bit map - padded with 0 to length L - maximum value of L is 1024

BIT VARYING(L) variable-length bit map - maximum value of L is 1024

UUID 16 byte fixed binary type represented as UUID string

DATE date

TIME(S) time of day (****)

TIME(S) WITH TIME ZONE time of day with zone displacement value (****)

TIMESTAMP(S) date with time of day (****)

TIMESTAMP(S) WITH TIME
ZONE

timestamp with zone displacement value (****)

INTERVAL date or time interval - has many variants

OTHER non-standard type for Java serializable object

ARRAY array of a base type

In the table above: (*) The parameters are optional. P is used for maximum precision and S for scale of DECIMAL
and NUMERIC. If only P is used, S defaults to 0. If none is used, P defaults to 128 and S defaults to 0. The maximum
value of each parameter is unlimited. (**) The parameter L is used for fixed length. If not used, it defaults to 1.
(***) The parameter L is used for maximum length. It is required for VARCHAR(L) and VARBINARY(L) but is
optional for the other types. If not used, it defaults to 1G for BLOB or CLOB, and 16M for the LONGVARCHAR
and LONGVARBINARY. The maximum value of the parameter is unlimited for CLOB and BLOB. It is 2 * 1024
*1024 *1024 for other string types. (****) The parameter S is optional and indicates sub-second fraction precision of
time (0 to 9). When not used, it defaults to 6.

Data Types and Operations
HyperSQL supports all the types defined by SQL-92, plus BOOLEAN, BINARY, ARRAY and LOB types that were
later added to the SQL Standard. It also supports the non-standard OTHER type to store serializable Java objects.

SQL is a strongly typed language. All data stored in specific columns of tables and other objects (such as sequence
generators) have specific types. Each data item conforms to the type limits such as precision and scale for the column. It
also conforms to any additional integrity constraints that are defined as CHECK constraints in domains or tables. Types
can be explicitly converted using the CAST expression, but in most expressions, they are converted automatically.

Data is returned to the user (or the application program) as a result of executing SQL statements such as query
expressions or function calls. All statements are compiled prior to execution and the return type of the data is known
after compilation and before execution. Therefore, once a statement is prepared, the data type of each column of the

SQL Language

17

returned result is known, including any precision or scale property. The type does not change when the same query
that returned one row, returns many rows as a result of adding more data to the tables.

Some SQL functions used within SQL statements are polymorphic, but the exact type of the argument and the return
value is determined at compile time.

When a statement is prepared, using a JDBC PreparedStatement object, it is compiled by the engine and the type
of the columns of its ResultSet and / or its parameters are accessible through the methods of PreparedStatement.

Numeric Types

TINYINT, SMALLINT, INTEGER, BIGINT, NUMERIC and DECIMAL (without a decimal point) are the supported
integral types. They correspond respectively to byte, short, int, long, BigDecimal and BigDecimal Java
types in the range of values that they can represent (NUMERIC and DECIMAL are equivalent). The type TINYINT
is an HSQLDB extension to the SQL Standard, while the others conform to the Standard definition. The SQL type
dictates the maximum and minimum values that can be held in a field of each type. For example the value range for
TINYINT is -128 to +127. The bit precision of TINYINT, SMALLINT, INTEGER and BIGINT is respectively 8, 16,
32 and 64. For NUMERIC and DECIMAL, decimal precision is used.

DECIMAL and NUMERIC with decimal fractions are mapped to java.math.BigDecimal and can have very
large numbers of digits. In HyperSQL the two types are equivalent. These types, together with integral types, are called
exact numeric types.

In HyperSQL, REAL, FLOAT and DOUBLE are equivalent: they are all mapped to double in Java. These types are
defined by the SQL Standard as approximate numeric types. The bit-precision of all these types is 64 bits.

The decimal precision and scale of NUMERIC and DECIMAL types can be optionally defined. For example,
DECIMAL(10,2) means maximum total number of digits is 10 and there are always 2 digits after the decimal point,
while DECIMAL(10) means 10 digits without a decimal point. The bit-precision of FLOAT can be defined but it is
ignored and the default bit-precision of 64 is used. The default precision of NUMERIC and DECIMAL (when not
defined) is 128.

Note: If a database has been set to ignore type precision limits with the SET DATABASE SQL SIZE FALSE command,
then a type definition of DECIMAL with no precision and scale is treated as DECIMAL(128,32). In normal operation,
it is treated as DECIMAL(128).

Integral Types

In expressions, values of TINYINT, SMALLINT, INTEGER, BIGINT, NUMERIC and DECIMAL (without a decimal
point) types can be freely combined and no data narrowing takes place. The resulting value is of a type that can support
all possible values.

If the SELECT statement refers to a simple column or function, then the return type is the type corresponding to the
column or the return type of the function. For example:

 CREATE TABLE t(a INTEGER, b BIGINT);
 SELECT MAX(a), MAX(b) FROM t;

will return a ResultSet where the type of the first column is java.lang.Integer and the second column is
java.lang.Long. However,

 SELECT MAX(a) + 1, MAX(b) + 1 FROM t;

will return java.lang.Long and BigDecimal values, generated as a result of uniform type promotion for all
possible return values. Note that type promotion to BigDecimal ensures the correct value is returned if MAX(b)
evaluates to Long.MAX_VALUE.

SQL Language

18

There is no built-in limit on the size of intermediate integral values in expressions. As a result, you should check for
the type of the ResultSet column and choose an appropriate getXXXX() method to retrieve it. Alternatively, you
can use the getObject() method, then cast the result to java.lang.Number and use the intValue() or
longValue() if the value is not an instance of java.math.BigDecimal.

When the result of an expression is stored in a column of a database table, it has to fit in the target column, otherwise an
error is returned. For example, when 1234567890123456789012 / 12345687901234567890 is evaluated,
the result can be stored in any integral type column, even a TINYINT column, as it is a small value.

In SQL Statements, an integer literal is treated as INTEGER, unless its value does not fit. In this case it is treated as
BIGINT or DECIMAL, depending on the value.

Depending on the types of the operands, the result of the operation is returned in a JDBC ResultSet in any of
the related Java types: Integer, Long or BigDecimal. The ResultSet.getXXXX() methods can be used to
retrieve the values so long as the returned value can be represented by the resulting type. This type is deterministically
based on the query, not on the actual rows returned.

Other Numeric Types

In SQL statements, number literals with a decimal point are treated as DECIMAL unless they are written with an
exponent. Thus 0.2 is considered a DECIMAL value but 0.2E0 is considered a DOUBLE value.

When an approximate numeric type, REAL, FLOAT or DOUBLE (all synonymous) is part of an expression involving
different numeric types, the type of the result is DOUBLE. DECIMAL values can be converted to DOUBLE unless
they are beyond the Double.MIN_VALUE - Double.MAX_VALUE range. For example, A * B, A / B, A + B,
etc. will return a DOUBLE value if either A or B is a DOUBLE.

Otherwise, when no DOUBLE value exists, if a DECIMAL or NUMERIC value is part an expression, the type of the
result is DECIMAL or NUMERIC. Similar to integral values, when the result of an expression is assigned to a table
column, the value has to fit in the target column, otherwise an error is returned. This means a small, 4 digit value of
DECIMAL type can be assigned to a column of SMALLINT or INTEGER, but a value with 15 digits cannot.

When a DECIMAL value is multiplied by a DECIMAL or integral type, the resulting scale is the sum of the scales of the
two terms. When they are divided, the result is a value with a scale (number of digits to the right of the decimal point)
equal to the larger of the scales of the two terms. The precision for both operations is calculated (usually increased)
to allow all possible results.

The distinction between DOUBLE and DECIMAL is important when a division takes place. For example, 10.0/8.0
(DECIMAL) equals 1.2 but 10.0E0/8.0E0 (DOUBLE) equals 1.25. Without division operations, DECIMAL
values represent exact arithmetic.

REAL, FLOAT and DOUBLE values are all stored in the database as java.lang.Double objects. Special
values such as NaN and +-Infinity are also stored and supported. These values can be submitted to the database
via JDBC PreparedStatement methods and are returned in ResultSet objects. In order to allow division
by zero of DOUBLE values in SQL statements (which returns NaN or +-Infinity) you should set the property
hsqldb.double_nan as false (SET DATABASE SQL DOUBLE NAN FALSE). The double values can be retrieved
from a ResultSet in the required type so long as they can be represented. For setting the values, when
PreparedStatement.setDouble() or setFloat() is used, the value is treated as a DOUBLE automatically.

In short,

<numeric type> ::= <exact numeric type> | <approximate numeric type>

<exact numeric type> ::= NUMERIC [<left paren> <precision> [<comma> <scale>]
<right paren>] | { DECIMAL | DEC } [<left paren> <precision> [<comma> <scale>]
<right paren>] | TINYINT | SMALLINT | INTEGER | INT | BIGINT

SQL Language

19

<approximate numeric type> ::= FLOAT [<left paren> <precision> <right paren>]
| REAL | DOUBLE PRECISION

<precision> ::= <unsigned integer>

<scale> ::= <unsigned integer>

Boolean Type
The BOOLEAN type conforms to the SQL Standard and represents the values TRUE, FALSE and UNKNOWN. This
type of column can be initialised with Java boolean values, or with NULL for the UNKNOWN value.

The three-value logic is sometimes misunderstood. For example, x IN (1, 2, NULL) does not return true if x is NULL.

In previous versions of HyperSQL, BIT was simply an alias for BOOLEAN. In version 2, BIT is a single-bit bit map.

<boolean type> ::= BOOLEAN

The SQL Standard does not support type conversion to BOOLEAN apart from character strings that consists of boolean
literals. Because the BOOLEAN type is relatively new to the Standard, several database products used other types to
represent boolean values. For improved compatibility, HyperSQL allows some type conversions to boolean.

Values of BIT and BIT VARYING types with length 1 can be converted to BOOLEAN. If the bit is set, the result of
conversion is the TRUE value, otherwise it is FALSE.

Values of TINYINT, SMALLINT, INTEGER and BIGINT types can be converted to BOOLEAN. If the value is zero,
the result is the FALSE value, otherwise it is TRUE.

Character String Types
The CHARACTER, CHARACTER VARYING and CLOB types are the SQL Standard character string types.
CHAR, VARCHAR and CHARACTER LARGE OBJECT are synonyms for these types. HyperSQL also supports
LONGVARCHAR as a synonym for VARCHAR. If LONGVARCHAR is used without a length, then a length of
16M is assigned. You can set LONGVARCHAR to map to CLOB, with the sql.longvar_is_lob connection
property or the SET DATABASE SQL LONGVAR IS LOB TRUE statement..

HyperSQL's default character set is Unicode, therefore all possible character strings can be represented by these types.

The SQL Standard behaviour of the CHARACTER type is a remnant of legacy systems in which character strings are
padded with spaces to fill a fixed width. These spaces are sometimes significant while in other cases they are silently
discarded. It would be best to avoid the CHARACTER type altogether. With the rest of the types, the strings are not
padded when assigned to columns or variables of the given type. The trailing spaces are still considered discardable
for all character types. Therefore, if a string with trailing spaces is too long to assign to a column or variable of a
given length, the spaces beyond the type length are discarded and the assignment succeeds (provided all the characters
beyond the type length are spaces).

The VARCHAR and CLOB types have length limits, but the strings are not padded by the system. Note that if you
use a large length for a VARCHAR or CLOB type, no extra space is used in the database. The space used for each
stored item is proportional to its actual length.

If CHARACTER is used without specifying the length, the length defaults to 1. For the CLOB type, the length limit
can be defined in units of kilobyte (K, 1024), megabyte (M, 1024 * 1024) or gigabyte (G, 1024 * 1024 * 1024), using
the <multiplier>. If CLOB is used without specifying the length, the length defaults to 1GB.

<character string type> ::= { CHARACTER | CHAR } [<left paren> <character
length> <right paren>] | { CHARACTER VARYING | CHAR VARYING | VARCHAR } <left

SQL Language

20

paren> <character length> <right paren> | LONGVARCHAR [<left paren> <character
length> <right paren>] | <character large object type>

<character large object type> ::= { CHARACTER LARGE OBJECT | CHAR LARGE OBJECT
| CLOB } [<left paren> <character large object length> <right paren>]

<character length> ::= <unsigned integer> [<char length units>]

<large object length> ::= <length> [<multiplier>] | <large object length token>

<character large object length> ::= <large object length> [<char length units>]

<large object length token> ::= <digit>... <multiplier>

<multiplier> ::= K | M | G

<char length units> ::= CHARACTERS | OCTETS

Each character type has a collation. This is either a default collation or stated explicitly with the COLLATE clause.
Collations are discussed in the Schemas and Database Objects chapter.

 CHAR(10)
 CHARACTER(10)
 VARCHAR(2)
 CHAR VARYING(2)
 CLOB(1000)
 CLOB(30K)
 CHARACTER LARGE OBJECT(1M)
 LONGVARCHAR

Binary String Types
The BINARY, BINARY VARYING and BLOB types are the SQL Standard binary string types. VARBINARY
and BINARY LARGE OBJECT are synonyms for BINARY VARYING and BLOB types. HyperSQL also supports
LONGVARBINARY as a synonym for VARBINARY. You can set LONGVARBINARY to map to BLOB, with the
sql.longvar_is_lob connection property or the SET DATABASE SQL LONGVAR IS LOB TRUE statement.

Binary string types are used in a similar way to character string types. There are several built-in functions that are
overloaded to support character, binary and bit strings.

The BINARY type represents a fixed width-string. Each shorter string is padded with zeros to fill the fixed width.
Similar to the CHARACTER type, the trailing zeros in the BINARY string are simply discarded in some operations.
For the same reason, it is best to avoid this particular type and use VARBINARY instead.

When two binary values are compared, if one is of BINARY type, then zero padding is performed to extend the length
of the shorter string to the longer one before comparison. No padding is performed with other binary types. If the bytes
compare equal to the end of the shorter value, then the longer string is considered larger than the shorter string.

If BINARY is used without specifying the length, the length defaults to 1. For the BLOB type, the length limit can
be defined in units of kilobyte (K, 1024), megabyte (M, 1024 * 1024) or gigabyte (G, 1024 * 1024 * 1024), using the
<multiplier>. If BLOB is used without specifying the length, the length defaults to 1GB.

The UUID type represents a UUID string. The type is similar to BINARY(16) but with the extra
enforcement that disallows assigning, casting, or comparing with shorter or longer strings. Strings such as
'24ff1824-01e8-4dac-8eb3-3fee32ad2b9c' or '24ff182401e84dac8eb33fee32ad2b9c' are allowed. When a value of the
UUID type is converted to a CHARACTER type, the hyphens are inserted in the required positions. Java UUID objects
can be used with java.sql.PreparedStatement to insert values of this type. The getObject() method of
ResultSet returns the Java object for UUID column data.

SQL Language

21

<binary string type> ::= BINARY [<left paren> <length> <right paren>] | { BINARY
VARYING | VARBINARY } <left paren> <length> <right paren> | LONGVARBINARY [<left
paren> <length> <right paren>] | UUID | <binary large object string type>

<binary large object string type> ::= { BINARY LARGE OBJECT | BLOB } [<left
paren> <large object length> <right paren>]

<length> ::= <unsigned integer>

 BINARY(10)
 VARBINARY(2)
 BINARY VARYING(2)
 BLOB(1000)
 BLOB(30G)
 BINARY LARGE OBJECT(1M)
 LONGVARBINARY

Bit String Types

The BIT and BIT VARYING types are the supported bit string types. These types were defined by SQL:1999 but
were later removed from the Standard. Bit types represent bit maps of given lengths. Each bit is 0 or 1. The BIT type
represents a fixed width-string. Each shorter string is padded with zeros to fill the fixed with. If BIT is used without
specifying the length, the length defaults to 1. The BIT VARYING type has a maximum width and shorter strings
are not padded.

Before the introduction of the BOOLEAN type to the SQL Standard, a single-bit string of the type BIT(1) was
commonly used. For compatibility with other products that do not conform to, or extend, the SQL Standard, HyperSQL
allows values of BIT and BIT VARYING types with length 1 to be converted to and from the BOOLEAN type.
BOOLEAN TRUE is considered equal to B'1', BOOLEAN FALSE is considered equal to B'0'.

For the same reason, numeric values can be assigned to columns and variables of the type BIT(1). For assignment, the
numeric value zero is converted to B'0', while all other values are converted to B'1'. For comparison, numeric values
1 is considered equal to B'1' and numeric value zero is considered equal to B'0'.

It is not allowed to perform other arithmetic or boolean operations involving BIT(1) and BIT VARYING(1). The kid
of operations allowed on bit strings are analogous to those allowed on BINARY and CHARACTER strings. Several
built-in functions support all three types of string.

<bit string type> ::= BIT [<left paren> <length> <right paren>] | BIT VARYING
<left paren> <length> <right paren>

 BIT
 BIT(10)
 BIT VARYING(2)

Lob Data

BLOB and CLOB are lob types. These types are used for very long strings that do not necessarily fit in memory. Small
lobs that fit in memory can be accessed just like BINARY or VARCHAR column data. But lobs are usually much
larger and therefore accessed with special JDBC methods.

To insert a lob into a table, or to update a column of lob type with a new lob, you can use the setBinaryStream()
and setCharacterStream() methods of JDBC java.sql.PreparedStatement. These are very efficient
methods for long lobs. Other methods are also supported. If the data for the BLOB or CLOB is already a memory object,
you can use the setBytes() or setString() methods, which are efficient for memory data. Another method
is to obtain a lob with the getBlob() and getClob() methods of java.sql.Connection, populate its data,

SQL Language

22

then use the setBlob() or setClob() methods of PreparedStatement. Yet another method allows to create
instances of org.hsqldb.jdbc.JDBCBlobFile and org.hsqldb.jdbc.JDBCClobFile and construct a
large lob for use with setBlob() and setClob() methods.

A lob is retrieved from a ResultSet with the getBlob() or getClob() method. The steaming methods of the lob
objects are then used to access the data. HyperSQL also allows efficient access to chunks of lobs with getBytes()
or getString() methods. Furthermore, parts of a BLOB or CLOB already stored in a table can be modified.
An updatable ResultSet is used to select the row from the table. The getBlob() or getClob() methods of
ResultSet are used to access the lob as a java.sql.Blob or java.sql.Clob object. The setBytes()
and setString() methods of these objects can be used to modify the lob. Finally the updateRow() method of
the ResultSet is used to update the lob in the row. Note these modifications are not allowed with compressed or
encrypted lobs.

Lobs are logically stored in columns of tables. Their physical storage is a separate *.lobs file. This file is created as
soon as a BLOB or CLOB is inserted into the database. The file will grow as new lobs are inserted into the database.
In version 2, the *.lobs file is never deleted even if all lobs are deleted from the database. In this case you can delete
the *.lobs file after a SHUTDOWN. When a CHECKPOINT happens, the space used for deleted lobs is freed and
is reused for future lobs. By default, clobs are stored without compression. You can use a database setting to enable
compression of clobs. This can significantly reduce the storage size of clobs.

Storage and Handling of Java Objects

From version 2.3.4 there are two options for storing Java Objects.

The default option allows storing Serializable object. The objects remain serialized inside the database until they are
retrieved. The application program that retrieves the object must include in its classpath the Java Class for the object,
otherwise it cannot retrieve the object.

Any serializable Java Object can be inserted directly into a column of type OTHER using any variation of
PreparedStatement.setObject() methods.

The alternative Live Object option is for mem: databases only and is enabled when the database property
sql.live_object=true is appended to the connection property that creates the mem database. For example
'jdbc:hsqldb:mem:mydb;sql.live_object=true'. With this option, any Java object can be stored as it
is not serialized. The SQL statement SET DATABASE SQL LIVE OBJECT TRUE can be also used. Note the SQL
statement must be executed on the first connection to the database before any data is inserted. No data access should
be made from this connection. Instead, new connections should be used for data access.

For comparison purposes and in indexes, any two Java Objects are considered equal unless one of them is NULL. You
cannot search for a specific object or perform a join on a column of type OTHER.

Java Objects can simply be stored internally and no operations can be performed on them other than assignment
between columns of type OTHER or checking for NULL. Tests such as WHERE object1 = object2 do not
mean what you might expect, as any non-null object would satisfy such a tests. But WHERE object1 IS NOT
NULL is perfectly acceptable.

The engine does not allow normal column values to be assigned to Java Object columns (for example, assigning an
INTEGER or STRING to such a column with an SQL statement such as UPDATE mytable SET objectcol
= intcol WHERE ...).

<java object type> ::= OTHER

The default method of storage is used when the objects and their state needs to be saved and retrieved in the future.
This method is also used when memory resources are limited and collections of objects are stored and retrieved only
when needed.

SQL Language

23

The Live Object option uses the database table as a collection of objects. This allows storing some attributes of the
objects in the same table alongside the object itself and fast search and retrieval of objects on their attributes. For
example, when many thousands of live objects contain details of films, the film title and the director can be stored in
the table and searches can be performed for films on these attributes:

CREATE TABLE movies (director VARCHAR(30), title VARCHAR(40), obj OTHER)
SELECT obj FROM movies WHERE director LIKE 'Luc%'

In any case, at least one attribute of the object should be stored to allow efficient retrieval of the objects from both
Live Object and Serialized storage. An ID number is often used as the stored column attribute.

Type Length, Precision and Scale
In HyperSQL, column length, precision and scale qualifiers are required and are always enforced. The VARCHAR
and VARBINARY types require a size parameter and do not have a default. For compatibility with CREATE
TABLE statements from other databases that do not have size parameters for VARCHAR column, the URL property
hsqldb.enforce_size=false or the SQL statement SET DATABASE SQL SIZE FALSE can be used to
allow the table creation and automatically apply a large value for the maximum size of the VARCHAR column. You
should test your application to ensure the length, precision and scale that is used for column definitions is appropriate
for the application data.

All other types have defaults for size or precision parameters. However, the defaults may not be what your application
requires and you may have to specify the parameters.

String types, including all BIT, BINARY and CHAR string types plus CLOB and BLOB, are generally defined with
a length. If no length is specified for BIT, BINARY and CHAR, the default length is 1. For CLOB and BLOB an
implementation defined length of 1G is used.

TIME and TIMESTAMP types can be defined with a fractional second precision between 0 and 9. INTERVAL type
definition may have precision and, in some cases, fraction second precision. DECIMAL and NUMERIC types may be
defined with precision and scale. For all of these types a default precision or scale value is used if one is not specified.
The default scale is 0. The default fractional precision for TIME is 0, while it is 6 for TIMESTAMP.

Values can be converted from one type to another in two different ways: by using explicit CAST expression or by
implicit conversion used in assignment, comparison, and aggregation.

String values cannot be assigned to VARCHAR columns if they are longer than the defined type length. For
CHARACTER columns, a long string can be assigned (with truncation) only if all the characters after the length are
spaces. Shorter strings are padded with the space character when inserted into a CHARACTER column. Similar rules
are applied to VARBINARY and BINARY columns. For BINARY columns, the padding and truncation rules are
applied with zero bytes, instead of spaces.

Explicit CAST of a value to a CHARACTER or VARCHAR type will result in forced truncation or padding. So a test
such as CAST (mycol AS VARCHAR(2)) = 'xy' will find the values beginning with 'xy'. This is the equivalent
of SUBSTRING(mycol FROM 1 FOR 2)= 'xy'.

For all numeric types, the rules of explicit cast and implicit conversion are the same. If cast or conversion causes any
digits to be lost from the fractional part, it can take place. If the non-fractional part of the value cannot be represented
in the new type, cast or conversion cannot take place and will result in a data exception.

There are special rules for DATE, TIME, TIMESTAMP and INTERVAL casts and conversions.

Datetime types
HSQLDB fully supports datetime and interval types and operations, including all relevant optional features, as
specified by the SQL Standard since SQL-92. The two groups of types are complementary.

SQL Language

24

The DATE type represents a calendar date with YEAR, MONTH and DAY fields.

The TIME type represents time of day with HOUR, MINUTE and SECOND fields, plus an optional SECOND
FRACTION field.

The TIMESTAMP type represents the combination of DATE and TIME types.

TIME and TIMESTAMP types can include WITH TIME ZONE or WITHOUT TIME ZONE (the default) qualifiers.
They can have fractional second parts. For example, TIME(6) has six fractional digits for the second field.

If fractional second precision is not specified, it defaults to 0 for TIME and to 6 for TIMESTAMP.

<datetime type> ::= DATE | TIME [<left paren> <time precision> <right paren>]
[<with or without time zone>] | TIMESTAMP [<left paren> <timestamp precision>
<right paren>] [<with or without time zone>]

<with or without time zone> ::= WITH TIME ZONE | WITHOUT TIME ZONE

<time precision> ::= <time fractional seconds precision>

<timestamp precision> ::= <time fractional seconds precision>

<time fractional seconds precision> ::= <unsigned integer>

 DATE
 TIME(6)
 TIMESTAMP(2) WITH TIME ZONE

TIME or TIMESTAMP literals containing a zone displacement value are WITH TIME ZONE. Examples of the string
literals used to represent date time values, some with time zone, some without, are below:

 DATE '2008-08-22'
 TIMESTAMP '2008-08-08 20:08:08'
 TIMESTAMP '2008-08-08 20:08:08+8:00' /* Beijing */
 TIME '20:08:08.034900'
 TIME '20:08:08.034900-8:00' /* US Pacific */

Time Zone

DATE values do not take time zones. For example, United Nations designates 5 June as World Environment Day,
which was observed on DATE '2008-06-05' in different time zones.

TIME and TIMESTAMP values without time zone, usually have a context that indicates some local time zone. For
example, a database for college course timetables usually stores class dates and times without time zones. This works
because the location of the college is fixed and the time zone displacement is the same for all the values. Even when the
events take place in different time zones, for example international flight times, it is possible to store all the datetime
information as references to a single time zone, usually GMT. For some databases it may be useful to store the time
zone displacement together with each datetime value. SQL’s TIME WITH TIME ZONE and TIMESTAMP WITH
TIME ZONE values include a time zone displacement value.

The time zone displacement is of the type INTERVAL HOUR TO MINUTE. This data type is described in the next
section. The legal values are between '–18:00' and '+18:00'.

Operations on Datetime Types

The expression <datetime expression> AT TIME ZONE { <interval primary> | <time
zone name> } evaluates to a datetime value representing exactly the same point of time in the specified <time

SQL Language

25

displacement> or the geographical <time zone name>. The expression, AT LOCAL is equivalent to AT TIME
ZONE <local time displacement>. If AT TIME ZONE is used with a datetime operand of type WITHOUT
TIME ZONE, the operand is first converted to a value of type WITH TIME ZONE using the session's calendar, then
the specified time zone displacement is set for the value. Therefore, in these cases, the final value depends on the time
zone of the session in which the statement was used, calculated at the exact point of time (of the input) and accounting
for daylight saving time at that point of time.

From version 2.7 it is possible to use regional time zones with AT TIME ZONE. Any zone name used must match
exactly a TimeZone id supported by the JVM. These include names such as 'America/New_York'. Some zones include
daylight saving time periods which are used when converting the time zone.

See also the FROM_TZ function which allows you to convert to a time zone without changing the date-time values
such as hour and minute.

AT TIME ZONE, modifies the field values of the datetime operand. This is done by the following procedure:

1. determine the corresponding datetime at UTC using the session's calendar.

2. find the datetime value at the given time zone that corresponds with the UTC value from step 1.

Example a:

 VALUES TIMESTAMP'2022-03-28 11:00:00' AT TIME ZONE INTERVAL '-5:00' HOUR TO MINUTE
 C1

 2022-03-28 14:00:00-5:00

 VALUES TIMESTAMP'2022-03-28 11:00:00+4:00' AT TIME ZONE 'America/Chicago'
 C1

 2022-03-28 02:00:00-5:00

In the first example above, the session's time zone displacement is '-8:00'. In step 1, time '11:00:00' is converted to
UTC, which is time '19:00:00+0:00'. In step 2, this value is expressed as time '14:00:00-5:00' in the target zone.

In the second example, the session's time zone displacement is not considered. In step 1, time is converted to UTC,
which is time '07:00:00+0:00', In step 2, this value is expressed as time '02:00:00-5:00' in the target zone.

Example b:

 TIME '12:00:00-5:00' AT TIME ZONE INTERVAL '1:00' HOUR TO MINUTE

Because the operand has a time zone, the result is independent of the session time zone displacement. Step 1 results
in TIME '17:00:00+0:00', and step 2 results in TIME '18:00:00+1:00'

Note that the operand is not limited to datetime literals used in these examples. Any valid expression that evaluates
to a datetime value can be the operand.

Type Conversion

CAST is used for all other conversions. Examples:

 CAST (<value> AS TIME WITHOUT TIME ZONE)
 CAST (<value> AS TIME WITH TIME ZONE)

In the first example, if <value> has a time zone component, it is simply dropped. For example, TIME '12:00:00-5:00'
is converted to TIME '12:00:00'

SQL Language

26

In the second example, if <value> has no time zone component, the current time zone displacement of the session is
added. For example, TIME '12:00:00' is converted to TIME '12:00:00-8:00' when the session time zone displacement
is '-8:00'.

Conversion between DATE and TIMESTAMP is performed by removing the TIME component of a TIMESTAMP
value or by setting the hour, minute and second fields to zero. TIMESTAMP '2008-08-08 20:08:08+8:00' becomes
DATE '2008-08-08', while DATE '2008-08-22' becomes TIMESTAMP '2008-08-22 00:00:00'.

Conversion between TIME and TIMESTAMP is performed by removing the DATE field values of a TIMESTAMP
value or by appending the fields of the TIME value to the fields of the current session date value.

Assignment

When a value is assigned to a datetime target, e.g., a value is used to update a row of a table, the type of the value must
be the same as the target, but the WITH TIME ZONE or WITHOUT TIME ZONE characteristics can be different. If
the types are not the same, an explicit CAST must be used to convert the value into the target type.

Comparison

When values WITH TIME ZONE are compared, they are converted to UTC values before comparison. If a value
WITH TIME ZONE is compared to another WITHOUT TIME ZONE, then the WITH TIME ZONE value is converted
to AT LOCAL, then converted to WITHOUT TIME ZONE before comparison.

It is not recommended to design applications that rely on comparisons and conversions between TIME values WITH
TIME ZONE. The conversions may involve normalisation of the time value, resulting in unexpected results. For
example, the expression: BETWEEN(TIME '12:00:00-8:00', TIME '22:00:00-8:00') is converted to BETWEEN(TIME
'20:00:00+0:00', TIME '06:00:00+0:00') when it is evaluated in the UTC zone, which is always FALSE.

Functions

Several functions return the current session timestamp in different datetime types:

CURRENT_DATE DATE

CURRENT_TIME TIME WITH TIME ZONE

CURRENT_TIMESTAMP TIMESTAMP WITH TIME ZONE

LOCALTIME TIME WITHOUT TIME ZONE

LOCALTIMESTAMP TIMESTAMP WITHOUT TIME ZONE

HyperSQL supports a very extensive range of functions for conversion, extraction and manipulation of DATE and
TIMESTAMP values. See the Built In Functions chapter.

Session Time Zone Displacement

When an SQL session is started (with a JDBC connection) the local time zone of the client JVM (including any
seasonal time adjustments such as daylight-saving time) is used as the session time zone displacement. In version 2.7
a Java Calendar object with the local time zone of the client JVM is created and used. Therefore when a seasonal
time adjustment for daylight saving time is made while the session is open, the SQL session zone displacement is
changed. In some older versions of HyperSQL, the SQL session time displacement was not changed when a seasonal
time adjustment took place.

To change the SQL session time zone displacement, use the following commands:

SET TIME ZONE <time displacement>

SQL Language

27

SET TIME ZONE LOCAL

The first command sets the displacement to the given value. The second command restores the original, real time zone
displacement of the session.

Datetime Values and Java

When datetime values are sent to the database using the PreparedStatement or CallableStatement
interfaces, the Java object is converted to the type of the prepared or callable statement parameter. This type may
be DATE, TIME, or TIMESTAMP (with or without time zone). The time zone displacement is the time zone of the
JDBC session.

When datetime values are retrieved from the database using the ResultSet interface, there are two representations.
The getString(…) methods of the ResultSet interface, return an exact representation of the value in the SQL
type as it is stored in the database. This includes the correct number of digits for the fractional second field, and
for values with time zone displacement, the time zone displacement. Therefore, if TIME '12:00:00' is stored in the
database, all users in different time zones will get '12:00:00' when they retrieve the value as a string. The getTime(…)
and getTimestamp(…) methods of the ResultSet interface return Java objects that are corrected for the session
time zone. The UTC millisecond value contained the java.sql.Time or java.sql.Timestamp objects will
be adjusted to the time zone of the session, therefore the toString() method of these objects return the same values
in different time zones.

If you want to store and retrieve UTC values that are independent of any session's time zone, you can use a
TIMESTAMP WITH TIME ZONE column. The setTime(...) and setTimestamp(...) methods of the
PreparedStatement interface which have a Calendar parameter can be used to assign the values. The time zone of the
given Calendar argument is used as the time zone. Conversely, the getTime(...) and getTimestamp(...)
methods of the ResultSet interface which have a Calendar parameter can be used with a Calendar argument to retrieve
the values.

Java 8 Extensions

JDBC 4 and JAVA6 did not include type codes for SQL datetime types that have a TIME ZONE property. Therefore,
HyperSQL reported these types by default as datetime types without TIME ZONE.

JAVA 8 introduced new type codes for TIMESTAMP WITH TIME ZONE and TIME WITH TIME ZONE.
HyperSQL (except the jars compiled with JDK 1.6) supports this in ResultSet, PreparedStatement and
CallableStatement.

• The getObject(int columnIndex) method on a column of TIMESTAMP WITH TIME ZONE returns an
java.time.OffsetDateTime object.

• The getObject(int columnIndex) method on a column of TIME WITH TIME ZONE returns an
java.time.OffsetTime object.

• The getObject(int columnIndex, Class type) method on any date, time and timestamp
supports the java.time package types: LocalDate, LocalTime, LocalDateTime, OffsetTime,
OffsetDateTime, and Instance as well as java.sql package types, Date, Time and Timestamp.

• The setObject methods also support Java objects of the types listed above.

• The getObject and setObject methods with column name parameters behave just like their counterparts with
columnIndexe parameters.

Non-Standard Extensions

HyperSQL version 2.7 supports some extensions to the SQL standard treatment of datetime and interval types. For
example, the Standard expression to add a number of days to a date has an explicit INTERVAL value but HSQLDB

SQL Language

28

also allows an integer to be used without specifying DAY. Examples of some Standard expressions and their non-
standard alternatives are given below:

 -- standard forms
 CURRENT_DATE + '2' DAY
 SELECT (LOCALTIMESTAMP - atimestampcolumn) DAY TO SECOND FROM atable

 -- non-standard forms
 CURRENT_DATE + 2
 SELECT LOCALTIMESTAMP - atimestampcolumn FROM atable

It is recommended to use the SQL Standard syntax as it is more precise and avoids ambiguity.

Interval Types
Interval types are used to represent differences between date time values. The difference between two date time values
can be measured in seconds or in months. For measurements in months, the units YEAR and MONTH are available,
while for measurements in seconds, the units DAY, HOUR, MINUTE, SECOND are available. The units can be used
individually, or as a range. An interval type can specify the precision of the most significant field and the second
fraction digits of the SECOND field (if it has a SECOND field). The default precision is 2, following the Standard.
The default second precision is 0. The default precision is too small for many applications and should be overridden.

<interval type> ::= INTERVAL <interval qualifier>

<interval qualifier> ::= <start field> TO <end field> | <single datetime field>

<start field> ::= <non-second primary datetime field> [<left paren> <interval
leading field precision> <right paren>]

<end field> ::= <non-second primary datetime field> | SECOND [<left paren>
<interval fractional seconds precision> <right paren>]

<single datetime field> ::= <non-second primary datetime field> [<left paren>
<interval leading field precision> <right paren>] | SECOND [<left paren>
<interval leading field precision> [<comma> <interval fractional seconds
precision>] <right paren>]

<primary datetime field> ::= <non-second primary datetime field> | SECOND

<non-second primary datetime field> ::= YEAR | MONTH | DAY | HOUR | MINUTE

<interval fractional seconds precision> ::= <unsigned integer>

<interval leading field precision> ::= <unsigned integer>

Examples of INTERVAL type definition:

 INTERVAL YEAR TO MONTH
 INTERVAL YEAR(3)
 INTERVAL DAY(4) TO HOUR
 INTERVAL MINUTE(4) TO SECOND(6)
 INTERVAL SECOND(4,6)

The word INTERVAL indicates the general type name. The rest of the definition is called an <interval
qualifier>. This designation is important, as in most expressions <interval qualifier> is used without
the word INTERVAL.

Interval Values

SQL Language

29

An interval value can be negative, positive or zero. An interval type has all the datetime fields in the specified range.
These fields are similar to those in the TIMESTAMP type. The differences are as follows:

The first field of an interval value can hold any numeric value up to the specified precision. For example, the hour
field in HOUR(2) TO SECOND can hold values above 23 (up to 99). The year and month fields can hold zero (unlike
a TIMESTAMP value) and the maximum value of a month field that is not the most significant field, is 11.

The standard function ABS(<interval value expression>) can be used to convert a negative interval value
to a positive one.

The literal representation of interval values consists of the type definition, with a string representing the interval value
inserted after the word INTERVAL. Some examples of interval literal below:

 INTERVAL '145 23:12:19.345' DAY(3) TO SECOND(3)
 INTERVAL '3503:12:19.345' HOUR TO SECOND(3) /* equal to the first value */
 INTERVAL '19.345' SECOND(4,3) /* maximum number of digits for the second value is 4, and each
 value is expressed with three fraction digits. */
 INTERVAL '-23-10' YEAR(2) TO MONTH

Interval values of the types that are based on seconds can be cast into one another. Similarly, those that are based on
months can be cast into one another. It is not possible to cast or convert a value based on seconds to one based on
months, or vice versa.

When a cast is performed to a type with a smaller least-significant field, nothing is lost from the interval value.
Otherwise, the values for the missing least-significant fields are discarded. Examples:

 CAST (INTERVAL '145 23:12:19' DAY TO SECOND AS INTERVAL DAY TO HOUR) = INTERVAL '145 23' DAY
 TO HOUR
 CAST(INTERVAL '145 23' DAY TO HOUR AS INTERVAL DAY TO SECOND) = INTERVAL '145 23:00:00' DAY TO
 SECOND

A numeric value can be cast to an interval type. In this case the numeric value is first converted to a single-field
INTERVAL type with the same field as the least significant field of the target interval type. This value is then converted
to the target interval type For example CAST(22 AS INTERVAL YEAR TO MONTH) evaluates to INTERVAL '22'
MONTH and then INTERVAL '1 10' YEAR TO MONTH. Note that SQL Standard only supports casts to single-field
INTERVAL types, while HyperSQL allows casting to multi-field types as well.

An interval value can be cast to a numeric type. In this case the interval value is first converted to a single-field
INTERVAL type with the same field as the least significant filed of the interval value. The value is then converted
to the target type. For example, CAST (INTERVAL '1-11' YEAR TO MONTH AS INT) evaluates to INTERVAL
'23' MONTH, and then 23.

An interval value can be cast into a character type, which results in an INTERVAL literal. A character value can be
cast into an INTERVAL type so long as it is a string with a format compatible with an INTERVAL literal.

Two interval values can be added or subtracted so long as the types of both are based on the same field, i.e., both are
based on MONTH or SECOND. The values are both converted to a single-field interval type with same field as the
least-significant field between the two types. After addition or subtraction, the result is converted to an interval type
that contains all the fields of the two original types.

An interval value can be multiplied or divided by a numeric value. Again, the value is converted to a numeric, which
is then multiplied or divided, before converting back to the original interval type.

An interval value is negated by simply prefixing with the minus sign.

Interval values used in expressions are either typed values, including interval literals, or are interval casts. The
expression: <expression> <interval qualifier> is a cast of the result of the <expression> into the

SQL Language

30

INTERVAL type specified by the <interval qualifier>. The cast can be formed by adding the
keywords and parentheses as follows: CAST (<expression> AS INTERVAL <interval
qualifier>).

The examples below feature different forms of expression that represent an
interval value, which is then added to the given date literal.

 DATE '2000-01-01' + INTERVAL '1-10' YEAR TO MONTH /* interval literal */
 DATE '2000-01-01' + '1-10' YEAR TO MONTH /* the string '1-10' is cast into INTERVAL YEAR TO
 MONTH */
 DATE '2000-01-01' + 22 MONTH /* the integer 22 is cast into INTERVAL MONTH, same value as above
 */
 DATE '2000-01-01' - 22 DAY /* the integer 22 is cast into INTERVAL DAY */
 DATE '2000-01-01' + COL2 /* the type of COL2 must be an INTERVAL type */
 DATE '2000-01-01' + COL2 MONTH /* COL2 may be a number, it is cast into a MONTH interval */

Datetime and Interval Operations

An interval can be added to or subtracted from a datetime value so long as they have some fields in common. For
example, an INTERVAL MONTH cannot be added to a TIME value, while an INTERVAL HOUR TO SECOND can.
The interval is first converted to a numeric value, then the value is added to, or subtracted from, the corresponding
field of the datetime value.

If the result of addition or subtraction is beyond the permissible range for the field, the field value is normalised and
carried over to the next significant field until all the fields are normalised. For example, adding 20 minutes to TIME
'23:50:10' will result successively in '23:70:10', '24:10:10' and finally TIME '00:10:10'. Subtracting 20 minutes from
the result is performed as follows: '00:-10:10', '-1:50:10', finally TIME '23:50:10'. Note that if DATE or TIMESTAMP
normalisation results in the YEAR field value out of the range (1,10000), then an exception condition is raised.

If an interval value based on MONTH is added to, or subtracted from a DATE or TIMESTAMP value, the result may
have an invalid day (30 or 31) for the given result month. In this case an exception condition is raised.

The result of subtraction of two datetime expressions is an interval value. The two datetime expressions must be of
the same type. The type of the interval value must be specified in the expression, using only the interval field names.
The two datetime expressions are enclosed in parentheses, followed by the <interval qualifier> fields. In
the first example below, COL1 and COL2 are of the same datetime type, and the result is evaluated in INTERVAL
YEAR TO MONTH type.

 (COL1 – COL2) YEAR TO MONTH /* the difference between two DATE or two TIEMSTAMP values in years
 and months */
 (CURRENT_DATE – COL3) DAY /* the number of days between the value of COL3 and the current date
 */
 (CURRENT_DATE - DATE '2000-01-01') YEAR TO MONTH /* the number of years and months since the
 beginning of this century */
 CURRENT_DATE - 2 DAY /* the date of the day before yesterday */
 (CURRENT_TIMESTAMP - TIMESTAMP '2009-01-01 00:00:00') DAY(4) TO SECOND(2) /* days to seconds
 since the given date */

The individual fields of both datetime and interval values can be extracted using the EXTRACT function. The same
function can also be used to extract the time zone displacement fields of a datetime value.

EXTRACT ({YEAR | MONTH | DAY | HOUR | MINUTE | SECOND | TIMEZONE_HOUR |
TIMEZONE_MINUTE | DAY_OF_WEEK | WEEK_OF_YEAR } FROM {<datetime value> | <interval
value>})

The dichotomy between interval types based on seconds, and those based on months, stems from the fact that the
different calendar months have different numbers of days. For example, the expression, “nine months and nine days
since an event” is not exact when the date of the event is unknown. It can represent a period of around 284 days give
or take one. SQL interval values are independent of any start or end dates or times. However, when they are added to

SQL Language

31

or subtracted from certain date or timestamp values, the result may be invalid and cause an exception (e.g. adding one
month to January 30 results in February 30, which is invalid).

JDBC has an unfortunate limitation and does not include type codes for SQL INTERVAL types. Therefore, for
compatibility with database tools that are limited to the JDBC type codes, HyperSQL reports these types by default as
VARCHAR. You can use the URL property hsqldb.translate_dti_types=false to override the default
behaviour.

Java 8 Extensions

JAVA 8 does not have SQL type codes for INTERVAL types. HyperSQL (except the jars compiled with
JDK 1.6) supports java.time types for INTERVAL types in ResultSet, PreparedStatement and
CallableStatement.

• The getObject(int columnIndex, Class type) method on an INTERVAL supports the
java.time.Period type for YEAR and MONTH interval and the java.time.Duration type for other
interval types that cover DAY to SECOND.

• The setObject(int columnIndex) method accepts java.time.Period and java.time.Duration
objects for columns of relevant INTERVAL types.

• The getObject and setObject methods with column name parameters behave just like their counterparts with
columnIndexe parameters.

Arrays
Array are a powerful feature of SQL:2016 and can help solve many common problems. Arrays should not be used
as a substitute for tables.

HyperSQL supports arrays of values according to the Standard.

Elements of the array are either NULL, or of the same data type. It is possible to define arrays of all supported types,
including the types covered in this chapter and user-defined types, except LOB types. An SQL array is one dimensional
and is addressed from position 1. An empty array can also be used, which has no element.

Arrays can be stored in the database, as well as being used as temporary containers of values for simplifying SQL
statements. They facilitate data exchange between the SQL engine and the user's application.

The full range of supported syntax allows array to be created, used in SELECT or other statements, combined with
rows of tables, and used in routine calls.

Array Definition

The type of a table column, a routine parameter, a variable, or the return value of a function can be defined as an array.

<array type> ::= <data type> ARRAY [<left bracket or trigraph> <maximum
cardinality> <right bracket or trigraph>]

The word ARRAY is added to any valid type definition except BLOB and CLOB type definitions. If the optional
<maximum cardinality> is not used, the default value is 1024. The size of the array cannot be extended beyond
maximum cardinality.

In the example below, the table contains a column of INTEGER arrays and a column of VARCHAR arrays. The
VARCHAR array has an explicit maximum size of 10, which means each array can have between 0 and 10 elements.
The INTEGER array has the default maximum size of 1024. The scores column has a default clause with an empty

SQL Language

32

array. The default clause can be defined only as DEFAULT NULL or DEFAULT ARRAY[] and does not allow arrays
containing elements.

 CREATE TABLE t (id INT PRIMARY KEY, scores INT ARRAY DEFAULT ARRAY[], names VARCHAR(20)
 ARRAY[10])

An array can be constructed from value expressions or a query expression.

<array value constructor by enumeration> ::= ARRAY <left bracket or trigraph>
<array element list> <right bracket or trigraph>

<array element list> ::= <value expression> [{ <comma> <value expression> }...]

<array value constructor by query> ::= ARRAY <left paren> <query expression>
[<order by clause>] <right paren>

In the examples below, arrays are constructed from values, column references or variables, function calls, or query
expressions.

 ARRAY [1, 2, 3]
 ARRAY ['HOT', 'COLD']
 ARRAY [var1, var2, CURRENT_DATE]
 ARRAY (SELECT lastname FROM namestable ORDER BY id)

Inserting and updating a table with an ARRAY column can use array constructors, not only for updated column values,
but also in equality search conditions:

 INSERT INTO t VALUES 10, ARRAY[1,2,3], ARRAY['HOT', 'COLD']
 UPDATE t SET names = ARRAY['LARGE', 'SMALL'] WHERE id = 12
 UPDATE t SET names = ARRAY['LARGE', 'SMALL'] WHERE id < 12 AND scores = ARRAY[3,4]

When using a PreparedStatement with an ARRAY parameter, a Java array or a java.sql.Array object may be
used to set the parameter.

In the example below prepared statements for INSERT and UPDATE with array parameters are used.

 // create
 String create = "CREATE TABLE t (id INT PRIMARY KEY, scores INT ARRAY DEFAULT ARRAY[], names
 VARCHAR(20) ARRAY[10])";
 Statement st = connection.createStatement();
 st.execute(create);

 // insert
 String insert = "INSERT INTO t VALUES ?, ?, ?";
 PreparedStatement ps = connection.prepareStatement(insert);
 Object[] numbers = new Object[]{17, 19};
 Object[] data = new Object[]{"one", "two"};
 ps.setInt(1, 10);
 ps.setObject(2, numbers);
 ps.setObject(3, data);
 ps.execute();

 // update
 String update_a = "UPDATE t SET names = ? WHERE id = ?";
 ps = connection.prepareStatement(update_a);
 data = new Object[]{"I", "II", "III", "IV"};
 ps.setObject(1, data);
 ps.setInt(2, 10);
 ps.executeUpdate();

In the example below, a java.sql.Array is used for the update, using the same data as above:

SQL Language

33

data = new Object[]{"I", "II", "III", "IV"};
Array array = connection.createArrayOf("VARCHAR", data);
ps.setArray(1, array);
ps.setInt(2, 10);
ps.executeUpdate();

Trigraph

A trigraph is a substitute for <left bracket> and <right bracket>.

<left bracket trigraph> ::= ??(

<right bracket trigraph> ::= ??)

The example below shows the use of trigraphs instead of brackets.

 INSERT INTO t VALUES 10, ARRAY??(1,2,3??), ARRAY['HOT', 'COLD']
 UPDATE t SET names = ARRAY ??('LARGE', 'SMALL'??) WHERE id = 12
 UPDATE t SET names = ARRAY['LARGE', 'SMALL'] WHERE id < 12 AND scores = ARRAY[3,4]

Array Reference

The most common operations on an array are element reference and assignment, which are used when reading or
writing an element of the array. Unlike Java and many other languages, arrays are extended if an element is assigned
to an index beyond the current length. This can result in gaps containing NULL elements. Array length cannot exceed
the maximum cardinality.

Elements of all arrays, including those that are the result of function calls or other operations can be referenced for
reading.

<array element reference> ::= <array value expression> <left bracket> <numeric
value expression> <right bracket>

Elements of arrays that are table columns or routine variables can be referenced for writing. This is done in a SET
statement, either inside an UPDATE statement, or as a separate statement in the case of routine variables, OUT and
INOUT parameters.

<target array element specification> ::= <target array reference> <left bracket
or trigraph> <simple value specification> <right bracket or trigraph>

<target array reference> ::= <SQL parameter reference> | <column reference>

Note that only simple values or variables are allowed for the array index when an assignment is performed. The
examples below demonstrate how elements of the array are referenced in SELECT and UPDATE statements.

 SELECT scores[ranking], names[ranking] FROM t JOIN t1 on (t.id = t1.tid)
 UPDATE t SET scores[2] = 123, names[2] = 'Reds' WHERE id = 10

Array Operations

Several SQL operations and functions can be used with arrays.

CONCATENATION

Array concatenation is performed similar to string concatenation. All elements of the array on the right are appended
to the array on left.

SQL Language

34

<array concatenation> ::= <array value expression 1> <concatenation operator>
<array value expression 2>

<concatenation operator> ::= ||

FUNCTIONS

Functions listed below operate on arrays. Details are described in the Built In Functions chapter.

ARRAY_AGG is an aggregate function and produces an array containing values from different rows of a SELECT
statement. Details are described in the Data Access and Change chapter.

SEQUENCE_ARRAY creates an array with sequential elements.

CARDINALITY <left paren> <array value expression> <right paren>

MAX_CARDINALITY <left paren> <array value expression> <right paren>

Array cardinality and max cardinality are functions that return an integer. CARDINALITY returns the element count,
while MAX_CARDINALITY returns the maximum declared cardinality of an array.

POSITION_ARRAY <left paren> <value expression> IN <array value expression> [FROM
<numeric value expression>] <right paren>

The POSITION_ARRAY function returns the position of the first match for the <value expression> from the start or
from the given start position when <numeric value expression> is used.

TRIM_ARRAY <left paren> <array value expression> <comma> <numeric value
expression> <right paren>

The TRIM_ARRAY function returns a copy of an array with the specified number of elements removed from the end
of the array. The <array value expression> can be any expression that evaluates to an array.

SORT_ARRAY <left paren> <array value expression> [{ ASC | DESC }] [NULLS
{ FIRST | LAST }] <right paren>

The SORT_ARRAY function returns a sorted copy of an array. NULL elements appear at the beginning of the new
array. You can change the sort direction or the position of NULL elements with the option keywords.

CAST

An array can be cast into an array of a different type. Each element of the array is cast into the element type of the
target array type. For example:

 SELECT CAST(scores[ranking] AS VARCHAR(6) ARRAY), names[ranking] FROM t JOIN t1 on (t.id =
 t1.tid)

UNNEST

Arrays can be converted into table references with the UNNEST keyword.

UNNEST(<array value expression>) [WITH ORDINALITY]

The <array value expression> can be any expression that evaluates to an array. A table is returned that
contains one column when WITH ORDINALITY is not used, or two columns when WITH ORDINALITY is used.
The first column contains the elements of the array (including all the nulls). When the table has two columns, the
second column contains the ordinal position of the element in the array. When UNNEST is used in the FROM clause

SQL Language

35

of a query, it implies the LATERAL keyword, which means the array that is converted to table can belong to any table
that precedes the UNNEST in the FROM clause. This is explained in the Data Access and Change chapter.

INLINE CONSTRUCTOR

Array constructors can be used in SELECT and other statements. For example, an array constructor with a subquery
can return the values from several rows as one array.

The example below shows an ARRAY constructor with a correlated subquery to return the list of order values for each
customer. The CUSTOMER table that is included for tests in the DatabaseManager GUI app is the source of the data.

 SELECT FIRSTNAME, LASTNAME, ARRAY(SELECT INVOICE.TOTAL FROM INVOICE WHERE CUSTOMERID =
 CUSTOMER.ID) AS ORDERS FROM CUSTOMER

 FIRSTNAME LASTNAME ORDERS
 --------- --------- --------------------------------------
 Laura Steel ARRAY[2700.90,4235.70]
 Robert King ARRAY[4761.60]
 Robert Sommer ARRAY[]
 Michael Smith ARRAY[3420.30]

COMPARISON

Arrays can be compared for equality. It is possible to define a UNIQUE constraint on a column of ARRAY type. Two
arrays are equal if they have the same length and the values at each index position are either equal or both NULL.
Array expressions cannot be used in a comparison expression such as GREATER THAN but they can be used in an
ORDER BY clause. For example, it is possible to add ORDER BY ORDERS to the above SELECT statement,

USER DEFINED FUNCTIONS and PROCEDURES

Array parameters, variables and return values can be specified in user defined functions and procedures, including
aggregate functions. An aggregate function can return an array that contains all the scalar values that have been
aggregated. These capabilities allow a wider range of applications to be covered by user defined functions and easier
data exchange between the engine and the user's application.

36

Chapter 3. Schemas and Database Objects

Fred Toussi, The HSQL Development Group
$Revision: 6425 $

Copyright 2009-2022 Fred Toussi. Permission is granted to distribute this document without any alteration
under the terms of the HSQLDB license. Additional permission is granted to the HSQL Development Group
to distribute this document with or without alterations under the terms of the HSQLDB license.
2022-10-20

Overview
This chapter discusses features of HyperSQL in the context of the SQL Standard. Strings enclosed in angle brackets
(for example <identifier>) are SQL syntax elements.

The persistent elements of an SQL environment are database objects. The database consists of catalogs plus
authorizations.

A catalog contains schemas, and schemas contain the objects that contain data or govern the data. Authorizations are
user names.

Each catalog contains a special schema called INFORMATION_SCHEMA. This schema is read-only and contains
some views and other schema objects. The views contain lists of all the database objects that exist within the catalog,
plus all authorizations.

Each database object has a name. A name is an identifier and is unique within its name-space.

Schemas and Schema Objects
In HyperSQL, there is only one catalog per database. The name of the catalog is PUBLIC. You can rename the catalog
with the ALTER CATALOG RENAME TO statement. All schemas belong to this catalog. The catalog name has no
relation to the file name of the database.

Each database has also an internal "unique" name which is automatically generated when the database is created. This
name is used for event logging. You can also change this unique name.

Schema objects are database objects that contain data or govern or perform operations on data. By definition, each
schema object belongs to a specific schema.

Schema objects can be divided into groups according to their characteristics.

• Some kinds of schema objects can exist independently from other schema object. Other kinds can exist only as an
element of another schema object. These dependent objects are automatically destroyed when the parent object is
dropped.

• There are multiple name-spaces within each schema. Separate name-spaces exists for different kinds of schema
object. Some name-spaces are shared between two similar kinds of schema objects.

• There can be dependencies between various schema objects, as some kinds of schema objects can include references
to other schema objects. These references can cross schema boundaries. Interdependence and cross referencing
between schema objects is allowed in some circumstances and disallowed in some others.

Schemas and Database Objects

37

• Schema objects can be destroyed with the DROP statement. If dependent schema objects exist, a DROP statement
will succeed only if it has a CASCADE clause. Dependent objects are also destroyed in most cases; but in some
cases, such as dropping DOMAIN objects, the dependent objects are not destroyed, but modified to remove the
dependency.

A new HyperSQL catalog contains an empty schema called PUBLIC. By default, this schema is the initial schema
when a new session is started. Additional schemas can be defined. Schema objects can be defined and used in the
PUBLIC schema, as well as any new schema that is created by the user. You can rename the PUBLIC schema.

HyperSQL allows all schemas to be dropped, except the schema that is the default initial schema for new sessions
(by default, the PUBLIC schema). For this schema, a DROP SCHEMA ... CASCADE statement will succeed but will
result in an empty schema, rather than no schema.

The statements for setting the initial schema for users are described in the Statements for Authorization and Access
Control chapter.

Names and References

The name of a schema object is an <identifier>. The name belongs to the name-space for the particular kind
of schema object. The name is unique within its name-space. For example, each schema has a separate name-space
for TRIGGER objects.

In addition to the name-spaces in the schema. Each table has a name-space for the names of its columns.

Because a schema object is always in a schema and a schema always in a catalog, it is possible, and sometimes
necessary, to qualify the name of the schema object that is being referenced in an SQL statement. This is done
by forming an <identifier chain>. In some contexts, only a simple <identifier> can be used and the
<identifier chain> is prohibited. While in some other contexts, the use of <identifier chain> is
optional. An identifier chain is formed by qualifying each object with the name of the object that owns its name-space.
Therefore, a column name is prefixed with a table name, a table name is prefixed with a schema name, and a schema
name is prefixed with a catalog name. A fully qualified column name is in the form <catalog name>.<schema
name>.<table name>.<column name>, likewise, a fully qualified sequence name is in the form <catalog
name>.<schema name>.<sequence name>.

HyperSQL extends the SQL standard to allow renaming all database objects. The ALTER ... RENAME TO command
has slightly different forms depending on the type of object. If an object is referenced in a VIEW or ROUTINE
definition, it is not always possible to rename it.

Character Sets

A CHARACTER SET is the whole or a subset of the UNICODE character set.

A character set name can only be a <regular identifier>. There is a separate name-space for character sets.

There are several predefined character sets. These character sets belong to INFORMATION_SCHEMA. However,
when they are referenced in a statement, no schema prefix is necessary.

The following character sets, together with some others, have been specified by the SQL Standard:

SQL_CHARACTER, SQL_TEXT, SQL_IDENTIFIER

The SQL_CHARACTER consists of ASCII letters, digits and the symbols used in the SQL language itself. SQL_TEXT
and SQL_IDENTIFIER are implementation defined. HyperSQL defines SQL_TEXT as the Unicode character set and
SQL_IDENTIFIER as the Unicode character set minus the SQL language special characters.

Schemas and Database Objects

38

SQL_TEXT consists of the full set of Unicode characters. These characters can be used in strings and clobs stored in the
database. The character repertoire of HyperSQL is the UTF16 character set, which covers all possible character sets.

If a predefined character set is specified for a table column, then any string stored in the column must contain only
characters from the specified character set. HyperSQL does not enforce the CHARACTER SET that is specified for
a column and may accept any character string supported by SQL_TEXT.

Collations

A COLLATION is the method used for ordering character strings in ordered sets and to determine equivalence of
two character strings.

The system collation is called SQL_TEXT. This collation sorts according to the Unicode code of the characters,
UNICODE_SIMPLE. The system collation is always used for INFORMATION_SCHEMA tables.

The default database collation is the same as the system collation. You can change this default, either with a language
collation, or with the SQL_TEXT_UCC. This collation is a case-insensitive form of the UNICODE_SIMPLE collation.

Collations for a large number of languages are supported by HyperSQL. These collations belong to
INFORMATION_SCHEMA. However, when they are referenced in a statement, there is no need for a schema prefix.

A different collation than the default collation can be specified for each table column that is defined as CHAR or
VARCHAR.

A collation can also be used in an ORDER BY clause.

A collation can be used in the GROUP BY clause.

 CREATE TABLE t (id INTEGER PRIMARY KEY, name VARCHAR(20) COLLATE "English")
 SELECT * FROM t ORDER BY name COLLATE "French"
 SELECT COUNT(*), name FROM t GROUP BY name COLLATE "English 0"

In the examples above, the collation for the column is already specified when it is defined. In the first SELECT
statement, the column is sorted using the French collation. In the second SELECT, the "English 0" collation is
used in the GROUP BY clause. This collation is case insensitive, so the same name with different uses of upper and
lower-case letters is considered the same and counted together.

The supported collations are named according to the language. You can see the list in the
INFORMATION_SCHEMA.COLLATIONS view. You can use just the name in double quotes for the default form
of the collation. If you add a strength between 0, 1, 2, 3, the case sensitivity and accent sensitivity changes. The value
0 indicates least sensitivity to differences. At this strength the collation is case-insensitive and ignores differences
between accented letters. At strength 1, differences between accented letters are taken into account. At strength 2, both
case and accent are significant. Finally, 3 indicates additional sensitivity to different punctuation. A second parameter
can also be used with values 0 or 1, to indicate how decomposition of accented characters for comparison is handled
for languages that support such characters. See the Java and ICU (International Components for Unicode) collation
documentation for more details on these values. For example, possible forms of the French collation are "French",
"French 0", "French 1", etc., and "French 2 1", etc. When the collation is specified without strength, it
seems the system defaults to strength 2, which is case and accent sensitive.

When a collation is not explicitly used in the CREATE TABLE statement for a column, then the database default
collation is used for this column. If you change the database default collation afterwards, the new collation will be used.

With the older versions of HyperSQL the special type VARCHAR_IGNORECASE was used as the column type for
case-insensitive comparison. Any column already defined as VARCHAR_IGNORECASE will be compared exactly
as before. In version 2.3.0 and later, this form is represented by the addition of UCC after the collation name, for
example "French UCC". You can still use the SET IGNORECASE TRUE statement in your session to force the UCC

Schemas and Database Objects

39

to be applied to the collation for the VARCHAR columns of new tables. UCC stands for Upper Case Comparison.
Before comparing two strings, both are converted to uppercase using the current collation. This is exactly how
VARCHAR_IGNORECASE worked.

It is recommended to use the default SQL_TEXT collation for your general CHAR or VARCHAR columns. For
columns where a language collation is desirable, the choice should be made very carefully, because names that are
very similar but only differ in the accents may be considered equal in searches.

When comparing two strings, HyperSQL 2.x pads the shorter string with spaces in order to compare two strings of
equal length. You can change the default database collation with one that does not pad the string with spaces before
comparison. This method of comparison was used in versions older than 2.0.

User defined collations can be created based on existing collations to control the space padding. These collations are
part of the current schema.

See the COLLATE keyword and SET DATABASE COLLATION statement in the System Management chapter.
The PAD SPACE or NO PAD clause is used to control padding.

Important

If you change the default collation of a database when there are tables containing data with CHAR or
VARCHAR columns that are part of an index, a primary key or a unique constraint, you must execute
SHUTDOWN COMPACT or SHUTDOWN SCRIPT after the change. If you do not do this, your queries
and other statements will show erratic behaviour and may result in unrecoverable errors.

Distinct Types
A distinct, user-defined TYPE is simply based on a built-in type. A distinct TYPE is used in table definitions and in
CAST statements.

Distinct types share a name-space with domains.

Domains
A DOMAIN is a user-defined type, simply based on a built-in type. A DOMAIN can have constraints that limit the
values that the DOMAIN can represent. A DOMAIN can be used in table definitions and in CAST statements.

Distinct types share a name-space with domains.

Number Sequences
A SEQUENCE object produces INTEGER values in sequence. The SEQUENCE can be referenced in special contexts
only within certain SQL statements. For each row where the object is referenced, its value is incremented.

There is a separate name-space for SEQUENCE objects.

IDENTITY columns are columns of tables which have an internal, unnamed SEQUENCE object. HyperSQL also
supports IDENTITY columns that use a named, external, SEQUENCE object.

SEQUENCE objects and IDENTITY columns are supported fully according to the latest SQL Standard syntax.

Sequences

The SQL Standard syntax and usage is different from what is supported by many existing database engines. Sequences
are created with the CREATE SEQUENCE command and their current value can be modified at any time with ALTER

Schemas and Database Objects

40

SEQUENCE. The next value for a sequence is retrieved with the NEXT VALUE FOR <name> expression. This
expression can be used for inserting and updating table rows.

Example 3.1. inserting the next sequence value into a table row

 INSERT INTO mytable VALUES 2, 'John', NEXT VALUE FOR mysequence

You can also use it in select statements. For example, if you want to number the returned rows of a SELECT in
sequential order, you can use:

Example 3.2. numbering returned rows of a SELECT in sequential order

 SELECT NEXT VALUE FOR mysequence, col1, col2 FROM mytable WHERE ...

The semantics of sequences are exactly as defined by SQL:2016. If you use the same sequence twice in the same row
in an INSERT statement, you will get the same value, as required by the Standard.

The correct way to use a sequence value is the NEXT VALUE FOR expression.

HyperSQL adds an extension to Standard SQL to return the last value returned by the NEXT VALUE FOR expression
in the current session. After a statement containing NEXT VALUE FOR is executed, the value that was returned for
NEXT VALUE FOR is available using the CURRENT VALUE FOR expression. In the example below, the NEXT
VALUE FOR expression is used to insert a new row. The value that was returned by NEXT VALUE FOR is retrieved
with the CURRENT VALUE FOR in the next insert statements to populate two new rows in a different table that has
a parent child relationship with the first table. For example, if the value 15 was returned by the sequence, the same
value 15 is inserted in the three rows.

Example 3.3. using the last value of a sequence

 INSERT INTO mytable VALUES 2, 'John', NEXT VALUE FOR mysequence
 INSERT INTO childtable VALUES 4, CURRENT VALUE FOR mysequence
 INSERT INTO childtable VALUES 5, CURRENT VALUE FOR mysequence

The INFORMATION_SCHEMA.SEQUENCES table contains the next value that will be returned from any of the
defined sequences. The SEQUENCE_NAME column contains the name and the NEXT_VALUE column contains the
next value to be returned. Note that this is only for getting information and you should not use it for accessing the next
sequence value. When multiple sessions access the same sequence, the value returned from this table by one session
could be used by a different session, causing a sequence value to be used twice unintentionally.

Identity Auto-Increment Columns

Each table can contain a single auto-increment column, known as the IDENTITY column. An IDENTITY column is a
SMALLINT, INTEGER, BIGINT, DECIMAL or NUMERIC column with its value generated by a sequence generator.

In HyperSQL 2.x, an IDENTITY column is not by default treated as the primary key for the table (as a result, multi-
column primary keys are possible with an IDENTITY column present). Use the SQL standard syntax for declaration
of the IDENTITY column.

The SQL standard syntax is used, which allows the initial value and other options to be specified.

<colname> [INTEGER | BIGINT | DECIMAL | NUMERIC] GENERATED { BY DEFAULT |
ALWAYS} AS IDENTITY [(<options>)]

 /* this table has no primary key */
 CREATE TABLE vals (id INTEGER GENERATED BY DEFAULT AS IDENTITY, data VARBINARY(2000))

Schemas and Database Objects

41

 /* in this table id becomes primary key because the old syntax is used - avoid this syntax */
 CREATE TABLE vals (id INTEGER IDENTITY, data VARBINARY(2000))

 /* use the standard syntax and explicity declare a primary key identity column */
 CREATE TABLE vals (id INTEGER GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY, data
 VARBINARY(2000))

When you add a new row to such a table using an INSERT INTO <tablename> ... statement, you can use
the DEFAULT keyword for the IDENTITY column, which results in an auto-generated value for the column.

The IDENTITY() function returns the last value inserted into any IDENTITY column by this session. Each session
manages this function call separately and is not affected by inserts in other sessions. Use CALL IDENTITY() as
an SQL statement to retrieve this value. If you want to use the value for a field in a child table, you can use INSERT
INTO <childtable> VALUES (...,IDENTITY(),...);. Both types of call to IDENTITY() must be
made before any additional update or insert statements are issued by the session.

In triggers and routines, the value returned by the IDENTITY() function is correct for the given context. For example,
if a call to a stored procedure inserts a row into a table, causing a new identity value to be generated, a call to
IDENTITY() inside the procedure will return the new identity, but a call outside the procedure will return the last
identity value that was generated before a call was made to the procedure.

The last inserted IDENTITY value can also be retrieved via JDBC, by specifying the Statement or PreparedStatement
object to return the generated value.

The next IDENTITY value to be used can be changed with the following statement. Note that this statement is not
used in normal operation and is only for special purposes, for example resetting the identity generator:

 ALTER TABLE <table name> ALTER COLUMN <column name> RESTART WITH <new value>;

For backward compatibility, support has been retained for CREATE TABLE <tablename>(<colname>
IDENTITY, ...) as a shortcut which defines the column both as an IDENTITY column and a PRIMARY KEY
column. Also, for backward compatibility, it is possible to use NULL as the value of an IDENTITY column in an
INSERT statement and the value will be generated automatically. You should avoid these compatibility features as
they may be removed from future versions of HyperSQL.

In the following example, the identity value for the first INSERT statement is generated automatically using the
DEFAULT keyword. The second INSERT statement uses a call to the IDENTITY() function to populate a row in the
child table with the generated identity value.

 CREATE TABLE star (id INTEGER GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY,
 firstname VARCHAR(20),
 lastname VARCHAR(20))
 CREATE TABLE movies (starid INTEGER, movieid INTEGER PRIMARY KEY, title VARCHAR(40))
 INSERT INTO star (id, firstname, lastname) VALUES (DEFAULT, 'Felix', 'the Cat')
 INSERT INTO movies (starid, movieid, title) VALUES (IDENTITY(), 10, 'Felix in Hollywood')

HyperSQL also supports IDENTITY columns that use an external, named SEQUENCE object. This feature is not part
of the SQL Standard. The example below uses this type of IDENTITY. Note the use of CURRENT VALUE FOR
seq here is multi-session safe. The returned value is the last value used by this session when the row was inserted
into the star table. This value is available until the transaction is committed. After commit, NULL is returned by the
CURRENT VALUE FOR expression until the SEQUENCE is used again.

 CREATE SEQUENCE seq
 CREATE TABLE star (id INTEGER GENERATED BY DEFAULT AS SEQUENCE seq PRIMARY KEY,
 firstname VARCHAR(20),
 lastname VARCHAR(20))
 CREATE TABLE movies (starid INTEGER, movieid INTEGER PRIMARY KEY, title VARCHAR(40))
 -- the first insert uses the next value from the sequence seq

Schemas and Database Objects

42

 INSERT INTO star (id, firstname, lastname) VALUES (DEFAULT, 'Felix', 'the Cat')
 -- the second insert uses CURRENT VALUE to insert the same auto-generated value into the other
 table
 INSERT INTO movies (starid, movieid, title) VALUES (CURRENT VALUE FOR seq, 10, 'Felix in
 Hollywood')

Tables

In the SQL environment, tables are the most essential components, as they hold all persistent data.

If TABLE is considered as metadata (without its actual data) it is called a relation in relational theory. It has one or
more columns, with each column having a distinct name and a data type. A table usually has one or more constraints
which limit the values that can potentially be stored in the TABLE. These constraints are discussed in the next section.

A single column of the table can be defined as IDENTITY. The values stored in this column are auto-generated and are
based on an (unnamed) identity sequence, or optionally, a named SEQUENCE object. One or more other columns of
the table can be defined as GENERATED by an expression that returns a value based on other columns of the same row.

Views

A VIEW is similar to a TABLE but it does not permanently contain rows of data. A view is defined as a QUERY
EXPRESSION, which is often a SELECT statement that references views and tables, but it can also consist of a
TABLE CONSTRUCTOR that does not reference any tables or views.

A view has many uses:

• Hide the structure and column names of tables. The view can represent one or more tables or views as a separate
table. This can include aggregate data, such as sums and averages, from other tables.

• Allow access to specific rows in a table. For example, records that were added since a given date.

• Allow access to specific columns. For example, access to columns that contain non-confidential information. Note
that this can also be achieved with the GRANT SELECT statement, using column-level privileges

A VIEW that returns the columns of a single ordinary TABLE is updatable if the query expression of the view is an
updatable query expression as discussed in the Data Access and Change chapter. Some updatable views are insertable-
into because the query expression is insertable-into. In these views, each column of the query expressions must be a
column of the underlying table and those columns of the underlying table that are not in the view must have a default
clause, or be an IDENTITY or GENERATED column. When rows of an updatable view are updated, or new rows are
inserted, or rows are deleted, these changes are reflected in the base table. A VIEW definition may specify that the
inserted or updated rows conform to the search condition of the view. This is done with the CHECK OPTION clause.

A view that is not updatable according to the above paragraph can be made updatable or insertable-into by adding
INSTEAD OF triggers to the view. These triggers contain statements to use the submitted data to modify the contents
of the underlying tables of the view separately. For example, a view that represents a SELECT statement that joins
two tables can have an INSTEAD OF DELETE trigger with two DELETE statements, one for each table. Views that
have an INSTEAD OF trigger are called TRIGGER INSERTABLE, TRIGGER UPDATABLE, etc., according to the
triggers that have been defined.

Views share a name-space with tables.

Constraints

A CONSTRAINT is a child schema object and can belong to a DOMAIN or a TABLE. CONSTRAINT objects can be
defined without specifying a name. In this case the system generates a name for the new object beginning with "SYS_".

Schemas and Database Objects

43

This default naming can be changed with the SET DATABASE SQL SYS INDEX NAMES TRUE statement, to
use the constraint name as the name of the index.

In a DOMAIN, CHECK constraints can be defined that limit the value represented by the DOMAIN. These constraints
work exactly like a CHECK constraint on a single column of a table as described below.

In a TABLE, a constraint takes three basic forms.

CHECK

A CHECK constraint consists of a <search condition> that must not be false (can be unknown) for each row of
the table. The <search condition> can reference all the columns of the current row. HyperSQL does not support
the optional feature of the SQL Standard that allows a <subquery> referencing tables and views in the database
in a <search condition>.

NOT NULL

A simple form of check constraint is the NOT NULL constraint, which applies to a single column.

UNIQUE

A UNIQUE constraint is based on an equality comparison of values of specific columns (taken together) of one row
with the same values from each of the other rows. The result of the comparison must never be true (can be false or
unknown). If a row of the table has NULL in any of the columns of the constraint, it conforms to the constraint. A
unique constraint on multiple columns (c1, c2, c3, ..) means that in no two rows, the sets of values for the columns can
be equal unless at least one of them is NULL. Each single column taken by itself can have repeat values in different
rows. The following example satisfies a UNIQUE constraint on the two columns

Example 3.4. Column values which satisfy a 2-column UNIQUE constraint

1, 2
2, 1
2, 2
NULL, 1
NULL, 1
1, NULL
NULL, NULL
NULL, NULL

If the SET DATABASE SQL UNIQUE NULLS FALSE has been set, then if not all the values set of columns are null,
the not null values are compared and it is disallowed to insert identical rows that contain at least one not-null value.

PRIMARY KEY

A PRIMARY KEY constraint is equivalent to a UNIQUE constraint on one or more NOT NULL columns. Only one
PRIMARY KEY can be defined in each table.

FOREIGN KEY

A FOREIGN key constraint is based on an equality comparison between values of specific columns (taken together)
of each row with the values of the columns of a UNIQUE constraint on another table or the same table. The result
of the comparison must never be false (can be unknown). A special form of FOREIGN KEY constraint, based on its
CHECK clause, allows the result to be unknown only if the values for all columns are NULL. A FOREIGN key can
be declared only if a UNIQUE constraint exists on the referenced columns.

Constraints share a name space with assertions.

Schemas and Database Objects

44

Assertions

An ASSERTION is a top-level schema object. It consists of a <search condition> that must not be false (can
be unknown). HyperSQL does not yet support assertions.

Assertions share a name-space with constraints

Triggers

A TRIGGER is a child schema object that always belongs to a TABLE or a VIEW.

Each time a DELETE, UPDATE or INSERT is performed on the table or view, additional actions are taken by the
triggers that have been declared on the table or view.

Triggers are discussed in detail in Triggers chapter.

There is a separate name space for triggers.

Routines

Routines are user-defined functions or procedures. The names and usage of functions and procedures are different.
FUNCTION is a routine that can be referenced in many types of statements. PROCEDURE is a routine that can be
referenced only in a CALL statement.

There is a separate name-space for routines.

Because of the possibility of overloading, each routine can have more than one name. The name of the routine is
the same for all overloaded variants, but each variant has a specific name, different from all other routine names and
specific names in the schema. The specific name can be specified in the routine definition statement. Otherwise it is
assigned by the engine. The specific name is used only for schema manipulation statements, which need to reference a
specific variant of the routine. For example, if a routine has two signatures, each signature has its own specific name.
This allows the user to drop one of the signatures while keeping the other.

Routines are discussed in detail in the SQL-Invoked Routines chapter.

Indexes

Indexes are an implementation-defined extension to the SQL Standard. HyperSQL has a dedicated name-space for
indexes in each schema.

Synonyms

Synonyms are user-defined names that refer to other schema objects. Synonyms can be defined for TABLE, VIEW,
SEQUENCE, PROCEDURE and FUNCTION names and used in SELECT, UPDATE, CALL, etc. statements. They
cannot be used in DDL statements. Synonym are in schemas, but they are used without a schema qualifier. When used,
a synonym is immediately translated to the target name and the target name is used in the actual statement. The access
privileges to the target object are checked.

 CREATE SYNONYM REG FOR OTHER_SCHEMA.REGISTRATION_DETAIL_TABLE

 SELECT R_ID, R_DATE FROM REG WHERE R_DATA > CURRENT_DATE - 3 DAY

A synonym cannot be the same as the name of any existing object in the schema.

Schemas and Database Objects

45

Statements for Schema Definition and Manipulation
Schemas and schema objects can be created, modified, and dropped. The SQL Standard defines a range of statements
for this purpose. HyperSQL supports many additional statements, especially for changing the properties of existing
schema objects.

Common Elements and Statements
These elements and statements are used for different types of object. They are described here, before the statements
that can use them.

identifier

definition of identifier

<identifier> ::= <regular identifier> | <delimited identifier> | <SQL language
identifier>

<delimited identifier> ::= <double quote> <character sequence> <double quote>

<regular identifier> ::= <special character sequence>

<SQL language identifier> ::= <special character sequence>

A <delimited identifier> is a sequence of characters enclosed with double-quote symbols. All characters
are allowed in the character sequence.

A <regular identifier> is a special sequence of characters. It consists of letters, digits, and the underscore
characters. It must begin with a letter. All the letters are translated to their upper-case version.

The database setting, SET DATABASE SQL REGULAR NAMES FALSE can be used to relax the rules for regular
identifier. With this setting, an underscore character can appear at the start of the regular identifier, and the dollar sign
character can be used in the identifier.

A <SQL language identifier> is similar to <regular identifier> but the letters can range only from
A-Z in the ASCII character set. This type of identifier is used for names of CHARACTER SET objects.

If the character sequence of a delimited identifier is the same as an undelimited identifier, it represents the same
identifier. For example, "JOHN" is the same identifier as JOHN. In a <regular identifier> the case-normal
form is considered for comparison. This form consists of the upper-case equivalent of all the letters. When a database
object is created with one of the CREATE statements or renamed with the ALTER statement, if the name is enclosed
in double quotes, the exact name is used as the case-normal form. But if it is not enclosed in double quotes, the name
is converted to uppercase and this uppercase version is stored in the database as the case-normal form.

The character sequence length of all identifiers must be between 1 and 128 characters.

A reserved word is one that is used by the SQL Standard for special purposes. It is similar to a <regular
identifier> but it cannot be used as an identifier for user objects. If a reserved word is enclosed in double quote
characters, it becomes a quoted identifier and can be used for database objects.

Case sensitivity rules for identifiers can be described simply as follows:

• all parts of SQL statements are converted to upper case before processing, except identifiers in double quotes and
strings in single quotes

• identifiers, both unquoted and double quoted, are then treated as case-sensitive

Schemas and Database Objects

46

• most database engines follow the same rule, except, in some respects, PostgreSQL, MySQL and MS SQLServer.

CASCADE or RESTRICT

drop behavior

<drop behavior> ::= CASCADE | RESTRICT

The <drop behavior> is a required element of statements that drop a SCHEMA or a schema object. If <drop
behavior> is not specified then RESTRICT is implicit. It determines the effect of the statement if there are other
objects in the catalog that reference the SCHEMA or the schema object. If RESTRICT is specified, the statement
fails if there are referencing objects. If CASCADE is specified, all the referencing objects are modified or dropped
with cascading effect. Whether a referencing object is modified or dropped, depends on the kind of schema object
that is dropped.

IF EXISTS

drop condition (HyperSQL)

<if exists clause> ::= IF EXISTS

This clause is not part of the SQL standard and is a HyperSQL extension to some commands that drop objects (schemas,
tables, views, sequences, and indexes). If it is specified, then the statement does not return an error if the drop statement
is issued on a non-existent object.

IF NOT EXISTS

create condition (HyperSQL)

<if not exists clause> ::= IF NOT EXISTS

This clause is not part of the SQL standard and is a HyperSQL extension to CREATE statements that create schemas,
tables, views, sequences and indexes, as well as ALTER TABLE ... ADD CONSTRAINT and ADD COLUMN
statements. If it is specified, then the statement does not return an error if the CREATE or ALTER statement is for
an object name that already exists.

SPECIFIC

specific routine designator

<specific routine designator> ::= SPECIFIC <routine type> <specific name>

<routine type> ::= ROUTINE | FUNCTION | PROCEDURE

This clause is used in statements that need to specify one of the multiple versions of an overloaded routine. The
<specific name> is the one specified in the <routine definition> statement. The keyword ROUTINE
can be used instead of either FUNCTION or PROCEDURE.

Renaming Objects

RENAME

rename statement (HyperSQL)

<rename statement> ::= ALTER <object type> <name> RENAME TO <new name>

Schemas and Database Objects

47

<object type> ::= CATALOG | SCHEMA | DOMAIN | TYPE | TABLE | CONSTRAINT | INDEX
| ROUTINE | SPECIFIC ROUTINE

<column rename statement> ::= ALTER TABLE <table name> ALTER COLUMN <name>
RENAME TO <new name>

This statement is used to rename an existing object. It is not part of the SQL Standard. The specified <name> is the
existing name, which can be qualified with a schema name, while the <new name> is the new name for the object.

Commenting Objects
COMMENT

comment statement (HyperSQL)

<comment statement> ::= COMMENT ON { TABLE | COLUMN | ROUTINE | SEQUENCE |
TRIGGER} <name> IS <character string literal>

Adds a comment to the object metadata, which can later be read from an INFORMATION_SCHEMA view. This
command is not part of the SQL Standard. The strange syntax is due to compatibility with other database engines that
support the statement. The <name> is the name of a table, view, column or routine. The name of the column consists
of dot-separated <table name> <period> <column name>. The name of the table, view or routine can be
a simple name. All names can be qualified with a schema name. If there is already a comment on the object, the new
comment will replace it. Comments can be added to views and their columns using the TABLE keyword.

The comments appear in the results returned by JDBC DatabaseMetaData methods, getTables() and
getColumns(). The INFORMATION_SCHEMA.SYSTEM_COMMENTS view contains the comments. You can
query this view using the schema name, object name, and column name to retrieve the comments.

Schema Creation
CREATE SCHEMA

schema definition

The CREATE_SCHEMA or DBA role is required in order to create a schema. A schema can be created with or without
schema objects. Schema objects can always be added after creating the schema, or existing ones can be dropped.
Within the <schema definition> statement, all schema object creation takes place inside the newly created
schema. Therefore, if a schema name is specified for the schema objects, the name must match that of the new schema.
In addition to statements for creating schema objects, the statement can include instances of <grant statement>
and <role definition>. This is a curious aspect of the SQL standard, as these elements do not really belong
to schema creation.

<schema definition> ::= CREATE SCHEMA <schema name clause> [<schema character
set specification>] [<schema element>...]

<schema name clause> ::= <schema name> | AUTHORIZATION <authorization identifier>
| <schema name> AUTHORIZATION <authorization identifier>

If the name of the schema is specified simply as <schema name>, then the AUTHORIZATION is the current user.
Otherwise, the specified <authorization identifier> is used as the AUTHORIZATION for the schema.
If <schema name> is omitted, then the name of the schema is the same as the specified <authorization
identifier>.

<schema element> ::= <table definition> | <view definition> | <domain definition>
| <character set definition> | <collation definition> | <transliteration

Schemas and Database Objects

48

definition> | <assertion definition> | <trigger definition> | <user-defined
type definition> | <user-defined cast definition> | <user-defined ordering
definition> | <transform definition> | <schema routine> | <sequence generator
definition> | <grant statement> | <role definition>

An example of the statement is given below. Note that a single semicolon appears at the end. There should be no
semicolon between the statements:

 CREATE SCHEMA ACCOUNTS AUTHORIZATION DBA
 CREATE TABLE AB(A INTEGER, ...)
 CREATE TABLE CD(C CHAR(10), ...)
 CREATE VIEW VI AS SELECT ...
 GRANT SELECT ON AB TO PUBLIC
 GRANT SELECT ON CD TO JOE;

It is not really necessary to create a schema and all its objects as one command. The schema can be created first, and
its objects can be created one by one.

DROP SCHEMA

drop schema statement

<drop schema statement> ::= DROP SCHEMA [IF EXISTS] <schema name> [IF EXISTS]
<drop behavior>

This command destroys an existing schema. If <drop behavior> is RESTRICT, the schema must be empty,
otherwise an error is raised. If CASCADE is specified as <drop behavior>, then all the objects contained in the
schema are destroyed with a CASCADE option.

Table Creation

CREATE TABLE

table definition

<table definition> ::= CREATE [{ <table scope> | <table type> }] TABLE [IF
NOT EXISTS] <table name> <table contents source> [WITH SYSTEM VERSIONING]
[ON COMMIT { PRESERVE | DELETE } ROWS]

<table scope> ::= { GLOBAL | LOCAL } TEMPORARY

<table type> :: = MEMORY | CACHED

<table contents source> ::= <table element list> | <as subquery clause>

<table element list> ::= <left paren> <table element> [{ <comma> <table
element> }...] <right paren>

<table element> ::= <column definition> | <table period definition> | <table
constraint definition> | <like clause>

like clause

A <like clause> copies all column definitions from another table into the newly created table. Its three options
indicate if the <default clause>, <identity column specification> and <generation clause>
associated with the column definitions are copied or not. If an option is not specified, it defaults to EXCLUDING. The
<generation clause> refers to columns that are generated by an expression but not to identity columns. All

Schemas and Database Objects

49

NOT NULL constraints are copied with the original columns, other constraints are not. The <like clause> can
be used multiple times, allowing the new table to have copies of the column definitions of one or more other tables.

 CREATE TABLE t (id INTEGER PRIMARY KEY, LIKE atable INCLUDING DEFAULTS EXCLUDING IDENTITY)

<like clause> ::= LIKE <table name> [<like options>]

<like options> ::= <like option>...

<like option> ::= <identity option> | <column default option> | <generation
option>

<identity option> ::= INCLUDING IDENTITY | EXCLUDING IDENTITY

<column default option> ::= INCLUDING DEFAULTS | EXCLUDING DEFAULTS

<generation option> ::= INCLUDING GENERATED | EXCLUDING GENERATED

as subquery clause

<as subquery clause> ::= [<left paren> <column name list> <right paren>] AS
<table subquery> { WITH NO DATA | WITH DATA }

An <as subquery clause> used in table definition creates a table based on a <table subquery>. This
kind of table definition is similar to a view definition. It can include new column names to override the column names
specified in the subquery. If WITH DATA is specified, then the new table will contain the rows of data returned by
the <table subquery>.

 CREATE TABLE t (a, b, c) AS (SELECT * FROM atable) WITH DATA

column definition

A column definition consists of a <column name> and in most cases a <data type> or <domain name>
as minimum. The other elements of <column definition> are optional. Each <column name> in a table
is unique.

<column definition> ::= <column name> [<data type or domain name>]
[<default clause> | <identity column specification> | <identity column sequence
specification> | <generation clause>] [<update clause>] [<column constraint
definition>...] [<collate clause>]

<data type or domain name> ::= <data type> | <domain name>

<column constraint definition> ::= [<constraint name definition>] <column
constraint> [<constraint characteristics>]

<column constraint> ::= NOT NULL | <unique specification> | <references
specification> | <check constraint definition>

A <column constraint definition> is a shortcut for a <table constraint definition>. A
constraint that is defined in this way is automatically turned into a table constraint. A name is automatically generated
for the constraint and assigned to it.

If a <collate clause> is specified, then a UNIQUE or PRIMARY KEY constraint or an INDEX on the column
will use the specified collation. Otherwise the default collation for the database is used.

Schemas and Database Objects

50

GENERATED

generated columns

The value of a column can be auto-generated in two ways.

One way is specific to columns of integral types (INTEGER, BIGINT, etc.) and associates a sequence generator with
the column. When a new row is inserted into the table, the value of the column is generated as the next available
value in the sequence.

The SQL Standard supports the use of unnamed sequences with the IDENTITY keyword. In addition, HyperSQL
supports the use of a named SEQUENCE object, which must be in the same schema as the table.

<identity column specification> ::= GENERATED { ALWAYS | BY DEFAULT } AS IDENTITY
[<left paren> <common sequence generator options> <right paren>]

<identity column sequence specification ::= GENERATED BY DEFAULT AS SEQUENCE
<sequence name>

The <identity column specification> or <identity column sequence specification> can
be specified for only a single column of the table.

The <identity column specification> is used for columns which represent values based on an unnamed
sequence generator. It is possible to insert a row into the table without specifying a value for the column. The value is
then generated by the sequence generators according to its rules. An identity column may or may not be the primary
key. Example below:

 CREATE TABLE t1 (id INTEGER GENERATED ALWAYS AS IDENTITY(START WITH 100), name VARCHAR(20)
 PRIMARY KEY)
 CREATE TABLE t2 (id INTEGER GENERATED BY DEFAULT AS IDENTITY(START WITH 1) PRIMARY KEY, name
 VARCHAR(20))

The <identity column sequence specification> is used when the column values are based on a named
SEQUENCE object (which must already exist). Example below:

 CREATE TABLE t3 (id INTEGER GENERATED BY DEFAULT AS SEQUENCE seq, name VARCHAR(20) PRIMARY KEY)

Inserting rows is done in the same way for a named or unnamed sequence generator. In both cases, if no value is
specified to be inserted, or the DEFAULT keyword is used for the column, the value is generated by the sequence
generator. If a value is specified, this value is used if the column definition has the BY DEFAULT specification.
If the column definition has the ALWAYS specification, a value can be specified but the OVERRIDING SYSTEM
VALUES must be specified in the INSERT statement. In the example below, the OVERRIDING clause is required
because a user value is provided.

 INSERT INTO t1 (id, name) OVERRIDING SYSTEM VALUE VALUES (14, 'Test Value')

The alternative form of the OVERRIDING clause is OVERRIDING USER VALUES. This is not used much as it is
always possible to avoid it. When this option is specified, the database engine ignores the value provided by user and
inserts the generated sequence value instead.

The other way in which the column value is auto-generated is by using the values of other columns in the same row.
This method is often used to create an index on a value that is derived from other column values.

<generation clause> ::= GENERATED ALWAYS AS <generation expression>

<generation expression> ::= <left paren> <value expression> <right paren>

Schemas and Database Objects

51

The <generation clause> is used for special columns which represent values based on the values held in other
columns in the same row. The <value expression> must reference only other, non-generated, columns of the
table in the same row. Any function used in the expression must be deterministic and must not access SQL-data. No
<query expression> is allowed. When <generation clause> is used, <data type> must be specified.

A generated column can be part of a foreign key or unique constraints or a column of an index. This capability is the
main reason for using generated columns. A generated column may contain a formula that computes a value based
on the values of other columns. Fast searches of the computed value can be performed when an index is declared on
the generated column. Or the computed values can be declared to be unique, using a UNIQUE constraint on the table.
The computed column cannot be overridden by user supplied values. When a row is updated and the column values
change, the generated columns are computed with the new values.

When a row is inserted into a table, or an existing row is updated, no value except DEFAULT can be specified for a
generated column. In the example below, data is inserted into the non-generated columns and the generated column
will contain 'Felix the Cat' or 'Pink Panther'.

 CREATE TABLE t (id INTEGER PRIMARY KEY,
 firstname VARCHAR(20),
 lastname VARCHAR(20),
 fullname VARCHAR(40) GENERATED ALWAYS AS (firstname || ' ' || lastname))
 INSERT INTO t (id, firstname, lastname) VALUES (1, 'Felix', 'the Cat')
 INSERT INTO t (id, firstname, lastname, fullname) VALUES (2, 'Pink', 'Panther', DEFAULT)

DEFAULT

default clause

A default clause can be used if GENERATED is not specified. If a column has a <default clause> then it is
possible to insert a row into the table without specifying a value for the column.

<default clause> ::= DEFAULT <default option>

<default option> ::= <literal> | <datetime value function> | USER | CURRENT_USER
| CURRENT_ROLE | SESSION_USER | SYSTEM_USER | CURRENT_CATALOG | CURRENT_SCHEMA
| CURRENT_PATH | NULL

The type of the <default option> must match the type of the column.

In PGS (PostgreSQL) compatibility mode, a NEXTVAL function can be used. Also, in MSS compatibility mode, the
default value can be enclosed in parentheses.

ON UPDATE

on update clause

If a column has a <on update clause> then every time an UPDATE or MERGE statement updates the values of
the other columns of the row, the value in this column is updated to the CURRENT_TIMESTAMP. If the UPDATE
statement explicitly updates this column, then the explicit value is used instead of CURRENT TIMESTAMP.

<on update clause> ::= ON UPDATE CURRENT_TIMESTAMP

The type of the column must be TIMESTAMP or TIMESTAMP WITH TIME ZONE.

This feature is not part of the SQL Standard and is similar to MySQL's ON UPDATE clause.

CONSTRAINT

Schemas and Database Objects

52

constraint name and characteristics

<constraint name definition> ::= CONSTRAINT <constraint name>

<constraint characteristics> ::= <constraint check time> [[NOT] DEFERRABLE
[<constraint check time>]]

<constraint check time> ::= INITIALLY DEFERRED | INITIALLY IMMEDIATE

Specify the name of a constraint and its characteristics. By default, the constraint is NOT DEFERRABLE and
INITIALLY IMMEDIATE. This means the constraint is enforced as soon as a data change statement is executed. If
INITIALLY DEFERRED is specified, then the constraint is enforced when the session commits. The characteristics
must be compatible. The constraint check time can be changed temporarily for an SQL session. HyperSQL does not
support deferring constraint enforcement. This feature of the SQL Standard has been criticised because it allows a
session to read uncommitted data that violates database integrity constraints but has not yet been checked.

CONSTRAINT

table constraint definition

<table constraint definition> ::= [<constraint name definition>] <table
constraint> [<constraint characteristics>]

<table constraint> ::= <unique constraint definition> | <referential constraint
definition> | <check constraint definition>

Three kinds of constraint can be defined on a table: UNIQUE (including PRIMARY KEY), FOREIGN KEY and
CHECK. Each kind has its own rules to limit the values that can be specified for different columns in each row of
the table.

UNIQUE

unique constraint definition

<unique constraint definition> ::= <unique specification> <left paren> <unique
column list> <right paren> | UNIQUE (VALUE)

<unique specification> ::= UNIQUE | PRIMARY KEY

<unique column list> ::= <column name list>

A unique constraint is specified on a single column or on multiple columns. On each set of columns taken together,
only one UNIQUE constraint can be specified. Each column of a PRIMARY KEY constraint has an implicit NOT
NULL constraint.

If UNIQUE(VALUE) is specified, the constraint created on all columns of the table.

FOREIGN KEY

referential constraint definition

<referential constraint definition> ::= FOREIGN KEY <left paren> <referencing
columns> <right paren> <references specification>

<references specification> ::= REFERENCES <referenced table and columns> [MATCH
<match type>] [<referential triggered action>]

<match type> ::= FULL | PARTIAL | SIMPLE

Schemas and Database Objects

53

<referencing columns> ::= <reference column list>

<referenced table and columns> ::= <table name> [<left paren> <reference column
list> <right paren>]

<reference column list> ::= <column name list>

<referential triggered action> ::= <update rule> [<delete rule>] | <delete
rule> [<update rule>]

<update rule> ::= ON UPDATE <referential action>

<delete rule> ::= ON DELETE <referential action>

<referential action> ::= CASCADE | SET NULL | SET DEFAULT | RESTRICT | NO ACTION

A referential constraint allows links to be established between the rows of two tables. The specified list of
<referencing columns> corresponds one by one to the columns of the specified list of <referenced
columns> in another table (or sometimes in the same table). For each row in the table, a row must exist in the
referenced table with equivalent values in the two column lists. There must exist a single unique constraint in the
referenced table on all the <referenced columns>.

The [MATCH match type] clause is optional and has an effect only on multi-column foreign keys and
only on rows containing at least a NULL in one of the <referencing columns>. If the clause is not specified,
MATCH SIMPLE is the default. If MATCH SIMPLE is specified, then any NULL means the row can exist (without
a corresponding row in the referenced table). If MATCH FULL is specified then either all the column values must be
NULL or none of them. MATCH PARTIAL allows any NULL but the non NULL values must match those of a row
in the referenced table. HyperSQL does not support MATCH PARTIAL.

Referential actions are specified with ON UPDATE and ON DELETE clauses. These actions take place when a row
in the referenced table (the parent table) has referencing rows in the referencing table and it is deleted or modified
with any SQL statement. The default is NO ACTION. This means the SQL statement that causes the DELETE or
UPDATE is terminated with an exception. The RESTRICT option is similar and works exactly the same without
deferrable constraints (which are not allowed by HyperSQL). The other three options, CASCADE, SET NULL and
SET DEFAULT all allow the DELETE or UPDATE statement to complete. With DELETE statements the CASCADE
option results in the referencing rows to be deleted. With UPDATE statements, the changes to the values of the
referenced columns are copied to the referencing rows. With both DELETE or UPDATE statement, the SET NULL
option results in the columns of the referencing rows to be set to NULL. Similarly, the SET DEFAULT option results
in the columns of the referencing rows to be set to their default values.

CHECK

check constraint definition

<check constraint definition> ::= CHECK <left paren> <search condition> <right
paren>

A CHECK constraint can exist for a TABLE or for a DOMAIN. The <search condition> evaluates to an SQL
BOOLEAN value for each row of the table. Within the <search condition> all columns of the table row can
be referenced. For all rows of the table, the <search condition> evaluates to TRUE or UNKNOWN. When a
new row is inserted, or an existing row is updated, the <search condition> is evaluated and if it is FALSE,
the insert or update fails.

A CHECK constraint for a DOMAIN is similar. In its <search condition>, the term VALUE is used to represents
the value to which the DOMAIN applies.

 CREATE TABLE t (a VARCHAR(20) CHECK (a IS NOT NULL AND CHARACTER_LENGTH(a) > 2))

Schemas and Database Objects

54

The search condition of a CHECK constraint cannot contain any function that is not deterministic. A check
constraint is a data integrity constraint; therefore it must hold with respect to the rest of the data in the database.
It cannot use values that are temporal or ephemeral. For example, CURRENT_USER is a function that returns
different values depending on who is using the database, or CURRENT_DATE changes day-to-day. Some temporal
expressions are retrospectively deterministic and are allowed in check constraints. For example, (CHECK VALUE <
CURRENT_DATE) is valid, because CURRENT_DATE will not move backwards in time, but (CHECK VALUE >
CURRENT_DATE) is not acceptable.

If you want to enforce the condition that a date value that is inserted into the database belongs to the future (at the time
of insertion), or any similar constraint, then use a TRIGGER with the desired condition.

DROP TABLE

drop table statement

<drop table statement> ::= DROP TABLE [IF EXISTS] <table name> [IF EXISTS]
<drop behavior>

Destroy a table. The default drop behaviour is RESTRICT and will cause the statement to fail if there is any view,
routine or foreign key constraint that references the table. If <drop behavior> is CASCADE, it causes all schema
objects that reference the table to drop. Referencing views are dropped. In the case of foreign key constraints that
reference the table, the constraint is dropped, rather than the TABLE that contains it.

Temporal System-Versioned Tables and SYSTEM_TIME
Period
System-versioned tables are tables that contain a SYSTEM_TIME period consisting of pair of columns defined as
auto-generated TIMESTAMP WITH TIME ZONE, together with the SYSTEM VERSIONING clause.

The basic component is the SYSTEM_TIME period. For each row currently in the table, the start timestamp column,
designated as ROW START, contains the UTC timestamp of the transaction of the INSERT or UPDATE statement that
last modified the row. The end timestamp column, designated as ROW END, contains a timestamp in the distant future
(end of epoch) that indicates the expiration date of the row. HyperSQL uses DATE '10000-01-01' as the expiration
timestamp. A table can have the SYSTEM_TIME period without system versioning.

When WITH SYSTEM VERSIONING is used in table definition, any DELETE or UPDATE is performed as usual.
But the deleted rows, and the old versions of the updated rows, are kept in the table with the expiration timestamp
changed to the UTC CURRENT_TIMESTAMP at the start of the transaction that contains the UPDATE or DELETE.
For example, a row that is updated twice has two old versions kept in the table as well as the current version.

The history rows cannot be modified. Any DELETE or UPDATE statement only sees the current version of each row of
the table and modifies them. SELECT statements also see the current version of the rows, unless the table reference in
the SELECT statement is followed by FOR SYSTEM_TIME AS OF <timestamp> or FOR SYSTEM_TIME FROM
<start timestamp> TO <end timestamp> or FOR SYSTEM_TIME BETWEEN <start timestamp>
AND <end timestamp>.

In a CREATE TABLE statement, the two period columns must be defined as follows:

<period begin column name> <timestamp data type> GENERATED ALWAYS AS ROW START

<period end column name> <timestamp data type> GENERATED ALWAYS AS ROW END

The <table period definition> references the period column, in a format similar to a UNIQUE constraint.

<table period definition> ::= PERIOD FOR SYSTEM_TIME <left paren> <period begin
column name> <comma> <period end column name> <right paren>

Schemas and Database Objects

55

The timestamp type actually used by the system is always TIMESTAMP(6) WITH TIME ZONE, regardless of the
type specified by the user.

An existing table can be converted to a system-versioned table. Two statement executions are needed. First, the ALTER
TABLE statement to create the SYSTEM_TIME period and its columns must be executed, followed by the ALTER
TABLE statement to add SYSTEM VERSIONING.

Conversely, system versioning can be removed from a table. The system period can be dropped after dropping system
versioning.

It is not allowed to change the structure of a system-versioned table by adding or removing columns.

See the ALTER TABLE statements in this chapter.

Table Settings

Table settings statements change the attributes of tables. These attributes are specific to HyperSQL and are not part
of the SQL Standard.

SET TABLE CLUSTERED

set table clustered property

<set table clustered statement> ::= SET TABLE <table name> CLUSTERED ON <left
paren> <column name list> <right paren>

Set the row clustering property of a table. The <column name list> is a list of column names that must correspond to
the columns of an existing PRIMARY KEY, UNIQUE or FOREIGN KEY index, or to the columns of a user defined
index. This statement is only valid for CACHED or TEXT tables.

Tables rows are stored in the database files as they are created, sometimes at the end of the file, sometimes in the
middle of the file. After a CHECKPOINT DEFRAG or SHUTDOWN COMPACT, the rows are reordered according
to the primary key of the table, or if there is no primary key, in no particular order.

When several consecutive rows of a table are retrieved during query execution it is more efficient to retrieve rows that
are stored adjacent to one another. After executing this command, nothing changes until a CHECKPOINT DEFRAG
or SHUTDOWN COMPACT or SHUTDOWN SCRIPT is performed. After these operations, the rows are stored in
the specified clustered order. The property is stored in the database and applies to all future reordering of rows. Note
that if extensive inserts or updates are performed on the tables, the rows will get out of order until the next reordering.

SET TABLE TYPE

set table type

<set table type statement> ::= SET TABLE <table name> TYPE { MEMORY | CACHED }

Changes the storage type of an existing table between CACHED and MEMORY types.

Only a user with the DBA role can execute this statement.

SET TABLE writability

set table write property

<set table read only statement> ::= SET TABLE <table name> { READ ONLY | READ
WRITE }

Schemas and Database Objects

56

Set the writability property of a table. Tables are writable by default. This statement can be used to change the property
between READ ONLY and READ WRITE. This is a feature of HyperSQL.

SET TABLE SOURCE

set table source statement

<set table source statement> ::= SET TABLE <table name> SOURCE <file and options>
[DESC]

<file and options>::= <doublequote> <file path> [<semicolon> <property>...]
<doublequote>

Set the text source for a text table. This statement cannot be used for tables that are not defined as TEXT TABLE.

Supported Properties

quoted = { true | false } default is true. If false, treats double quotes as normal characters

all_quoted = { true | false } default is false. If true, adds double quotes around all fields.

encoding = <encoding name> character encoding for text and character fields, for example, encoding=UTF-8.
UTF-16 or other encodings can also be used.

ignore_first = { true | false } default is false. If true ignores the first line of the file

cache_rows= <numeric value> rows of the text file in the cache. Default is 1000 rows

cache_size = <numeric value>r total size of the row in the cache. Default is 100 KB.

cache_scale= <numeric value>
and cache_size_scale = <numeric
value>

deprecated properties, replaced by cached_rows and cache_size properties
above.

fs = <unquoted character> field separator

vs = <unquoted character> varchar separator

qc = <unquoted character> quote character

Special indicators for HyperSQL Text Table separators

\semi semicolon

\quote quote

\space space character

\apos apostrophe

\n newline - Used as an end anchor (like $ in regular expressions)

\r carriage return

\t tab

\\ backslash

Schemas and Database Objects

57

\u#### a Unicode character specified in hexadecimal

In the example below, the text source of the table is set to "myfile", the field separator to the pipe symbol, and the
varchar separator to the tilde symbol.

 SET TABLE mytable SOURCE 'myfile;fs=|;vs=.;vs=~'

Only a user with the DBA role can execute this statement.

SET TABLE SOURCE HEADER

set table source header statement

<set table source header statement> ::= SET TABLE <table name> SOURCE HEADER
<header string>

Set the header for the text source for a text table. If this command is used, the <header string> is used as the
first line of the source file of the text table. This line is not part of the table data. Only a user with the DBA role can
execute this statement.

SET TABLE SOURCE on-off

set table source on-off statement

<set table source on-off statement> ::= SET TABLE <table name> SOURCE { ON | OFF }

Attach or detach a text table from its text source. This command does not change the properties or the name of the file
that is the source of a text table. When OFF is specified, the command detaches the table from its source and closes
the file for the source. In this state, it is not possible to read or write to the table. This allows the user to replace the
file with a different file, or delete it. When ON is specified, the source file is read. Only a user with the DBA role
can execute this statement.

Table Manipulation

Table manipulation statements modify the objects such as columns and constraints. Some of these statements are
defined by the SQL Standard. Others are HyperSQL extensions.

ALTER TABLE

alter table statement

<alter table statement> ::= ALTER TABLE <table name> <alter table action>

<alter table action> ::= <add column definition> | <alter column definition>
| <drop column definition> | <add table constraint definition> | <drop table
constraint definition> | <add table period definition> | <drop table period
definition> | <add system versioning clause> | <drop system versioning clause>

Change the definition of a table. Specific types of this statement are covered below.

ADD COLUMN

add column definition

<add column definition> ::= ADD [COLUMN] [IF NOT EXISTS] <column definition>
[BEFORE <other column name>]

Schemas and Database Objects

58

Add a column to an existing table. The <column definition> is specified the same way as it is used in <table
definition>. HyperSQL allows the use of [BEFORE <other column name>] to specify at which position
the new column is added to the table.

If the table contains rows, the new column must have a <default clause> or use one of the forms of
GENERATED. The column values for each row is then filled with the result of the <default clause> or the
generated value.

DROP COLUMN

drop column definition

<drop column definition> ::= DROP [COLUMN] <column name> <drop behavior>

Destroy a column of a base table. The <drop behavior> is either RESTRICT or CASCADE. If the column is
referenced in a table constraint that references other columns as well as this column, or if the column is referenced
in a VIEW, or the column is referenced in a TRIGGER, then the statement will fail if RESTRICT is specified. If
CASCADE is specified, then any CONSTRAINT, VIEW or TRIGGER object that references the column is dropped
with a cascading effect.

ADD CONSTRAINT

add table constraint definition

<add table constraint definition> ::= ADD <table constraint definition>

Add a constraint to a table. The existing rows of the table must conform to the added constraint, otherwise the statement
will not succeed.

DROP CONSTRAINT

drop table constraint definition

<drop table constraint definition> ::= DROP CONSTRAINT <constraint name> <drop
behavior>

Destroy a constraint on a table. The <drop behavior> has an effect only on UNIQUE and PRIMARY KEY
constraints. If such a constraint is referenced by a FOREIGN KEY constraint, the FOREIGN KEY constraint will be
dropped if CASCADE is specified. If the columns of such a constraint are used in a GROUP BY clause in the query
expression of a VIEW or another kind of schema object, and a functional dependency relationship exists between these
columns and the other columns in that query expression, then the VIEW or other schema object will be dropped when
CASCADE is specified.

ADD SYSTEM PERIOD

add system period definition

<add table system period definition> ::= ADD PERIOD FOR SYSTEM_TIME <left paren>
<period begin column name> <comma> <period end column name> <right paren> ADD
COLUMN <period begin column name> <timestamp data type> GENERATED ALWAYS AS
ROW START ADD COLUMN <period end column name> <timestamp data type> GENERATED
ALWAYS AS ROW END

Add the system period definition and columns to a table. The long statement must be entered in full. The existing rows
of the table are marked as created at the current timestamp with end-of-epoch expiration timestamp.

 ALTER TABLE t ADD PERIOD FOR SYSTEM_TIME(rs, re) ADD COLUMN rs TIMESTAMP GENERATED ALWAYS AS ROW
 START ADD COLUMN re TIMESTAMP GENERATED ALWAYS AS ROW END

Schemas and Database Objects

59

DROP SYSTEM PERIOD

drop system period definition

<drop table system period definition> ::= DROP PERIOD FOR SYSTEM_TIME <drop
behavior>

Drop the system period definition and columns of a table. The <drop behavior> is either RESTRICT or
CASCADE. If the system period or its columns have been referenced in other database object such as VIEW or
ROUTINE, then the statement will fail if RESTRICT is specified. If CASCADE is specified, then any such VIEW or
other database object that references the period or its columns is dropped with a cascading effect

ADD SYSTEM VERSIONING

add system versioning clause

<add system versioning clause> ::= ADD SYSTEM VERSIONING

Add system versioning to a table that already has a SYSTEM_TIME period definition and columns.

 ALTER TABLE t ADD SYSTEM VERSIONING

DROP SYSTEM VERSIONING

drop system versioning clause

<drop table system period definition> ::= DROP SYSTEM VERSIONING

Drop system versioning of a table. The <drop behavior> is either RESTRICT or CASCADE. If system versioning
has been referenced in other database object such as VIEW or ROUTINE, then the statement will fail if RESTRICT
is specified. If CASCADE is specified, then any such VIEW or other database object that references system versioning
is dropped with a cascading effect A references to system versioning consists of the FOR SYSTEM_TIME clause in
a SELECT statement. With the successful execution of this statement, all the history rows in the table are deleted and
only the current versions of rows survive. The period for SYSTEM_TIME, and its columns, survive after dropping
versioning.

ALTER COLUMN

alter column definition

<alter column definition> ::= ALTER [COLUMN] <column name> <alter column
action>

<alter column action> ::= <set column default clause> | <drop column default
clause> | <alter column data type clause> | <alter identity column specification>
| <alter column nullability> | <alter column name> | <add column identity
specification> | <drop column identity specification>

Change a column and its definition. Specific types of this statement are covered below. See also the RENAME
statement above.

SET DEFAULT

set column default clause

<set column default clause> ::= SET <default clause>

Schemas and Database Objects

60

Set the default clause for a column. This can be used if the column is not defined as GENERATED.

DROP DEFAULT

drop column default clause

<drop column default clause> ::= DROP DEFAULT

Drop the default clause from a column.

SET DATA TYPE

alter column data type clause

<alter column data type clause> ::= SET DATA TYPE <data type>

Change the declared type of a column. The latest SQL Standard allows only changes to type properties such as
maximum length, precision, or scale, and only changes that cause the property to enlarge. HyperSQL allows changing
the type if all the existing values can be cast into the new type without string truncation or loss of significant digits.

alter column add identity generator or sequence

alter column add identity generator or sequence

<add column identity generator> ::= <identity column specification>

<add column sequence generator> ::= <identity column sequence specification>

Adds an identity specification or a sequence to the column. The type of the column must be an integral type and the
existing values must not include nulls. This option is specific to HyperSQL

 ALTER TABLE mytable ALTER COLUMN id GENERATED ALWAYS AS IDENTITY (START WITH 20000)

 ALTER TABLE mytable ALTER COLUMN id GENERATED BY DEFAULT AS SEQUENCE seq

alter column identity generator

alter identity column specification

<alter identity column specification> ::= <alter identity column option>...

<alter identity column option> ::= <alter sequence generator restart option> |
SET <basic sequence generator option>

Change the properties of an identity column. This command is similar to the commands used for changing the properties
of named SEQUENCE objects discussed earlier and can use the same options.

 ALTER TABLE mytable ALTER COLUMN id RESTART WITH 1000
 ALTER TABLE mytable ALTER COLUMN id SET INCREMENT BY 5

DROP GENERATED

drop column identity generator

<drop column identity specification> ::= DROP GENERATED

Removes the identity generator from a column. After executing this statement, the column values are no longer
generated automatically. This option is specific to HyperSQL

Schemas and Database Objects

61

 ALTER TABLE mytable ALTER COLUMN id DROP GENERATED

SET [NOT] NULL

alter column nullability

<alter column nullability> ::= SET [NOT] NULL

Adds or removes a NOT NULL constraint from a column. This option is specific to HyperSQL

View Creation and Manipulation

CREATE VIEW

view definition

<view definition> ::= CREATE VIEW [IF NOT EXISTS] <table name> <view
specification> AS <query expression> [WITH [CASCADED | LOCAL] CHECK OPTION]

<view specification> ::= [<left paren> <view column list> <right paren>]

<view column list> ::= <column name list>

Define a view. The <query expression> is a SELECT or similar statement. The <view column list>
is the list of unique names for the columns of the view. The number of columns in the <view column list>
must match the number of columns returned by the <query expression>. If <view column list> is not
specified, then the columns of the <query expression> should have unique names and are used as the names
of the view column.

Some views are updatable. As covered elsewhere, an updatable view is based on a single table or updatable view.
For updatable views, the optional CHECK OPTION clause can be specified. If this option is specified, then if a row
of the view is updated or a new row is inserted into the view, then it should contain such values that the row would
be included in the view after the change. If WITH CASCADED CHECK OPTION is specified, then if the <query
expression> of the view references another view, then the search condition of the underlying view should also be
satisfied by the update or insert operation.

DROP VIEW

drop view statement

<drop view statement> ::= DROP VIEW [IF EXISTS] <table name> [IF EXISTS]
<drop behavior>

Destroy a view. The <drop behavior> is similar to dropping a table.

ALTER VIEW

alter view statement

<alter view statement> ::= ALTER VIEW <table name> <view specification> AS
<query expression> [WITH [CASCADED | LOCAL] CHECK OPTION]

Alter a view. The statement is otherwise identical to CREATE VIEW. The new definition replaces the old. If there
are database objects such as routines or views that reference the view, then these objects are recompiled with the new
view definition. If the new definition is not compatible, the statement fails.

Schemas and Database Objects

62

Domain Creation and Manipulation

CREATE DOMAIN

domain definition

<domain definition> ::= CREATE DOMAIN <domain name> [AS] <predefined type>
[<default clause>] [<domain constraint>...] [<collate clause>]

<domain constraint> ::= [<constraint name definition>] <check constraint
definition> [<constraint characteristics>]

Define a domain. Although a DOMAIN is not strictly a type in the SQL Standard, it can be informally considered as
a type. A DOMAIN is based on a <predefined type>, which is a base type defined by the Standard. It can have
a <default clause>, similar to a column default clause. It can also have one or more CHECK constraints which
limit the values that can be assigned to a column that has the DOMAIN as its type. The keyword VALUE is used in
the constraint definition to refer to the value of the column.

If a column uses a domain that contains a <default clause>, it can have a column default clause as well,
which overrides the default defined by the domain. In a table that contains a column based on a domain, the CHECK
constraints in table definition apply in addition to the CHECK constraints of the domain.

 CREATE DOMAIN valid_string AS VARCHAR(20) DEFAULT 'NO VALUE' CHECK (VALUE IS NOT NULL AND
 CHARACTER_LENGTH(VALUE) > 2)

ALTER DOMAIN

alter domain statement

<alter domain statement> ::= ALTER DOMAIN <domain name> <alter domain action>

<alter domain action> ::= <set domain default clause> | <drop domain default
clause> | <add domain constraint definition> | <drop domain constraint
definition>

Change a domain and its definition.

SET DEFAULT

set domain default clause

<set domain default clause> ::= SET <default clause>

Set the default value in a domain. This is allowed if the domain is already used in a table definition.

DROP DEFAULT

drop domain default clause

<drop domain default clause> ::= DROP DEFAULT

Remove the default clause of a domain. This is allowed if the domain is already used in a table definition. If a column
uses the domain as its type, the domain default is removed. If there is no existing column default clause, the default
clause of the domain becomes the column default clause.

ADD CONSTRAINT

Schemas and Database Objects

63

add domain constraint definition

<add domain constraint definition> ::= ADD <domain constraint>

Add a constraint to a domain. This is allowed if the domain is already used in a table definition and the table data
satisfies the constraint.

DROP CONSTRAINT

drop domain constraint definition

<drop domain constraint definition> ::= DROP CONSTRAINT <constraint name>

Remove a constraint on a domain. This is allowed if the domain is already used in a table definition. The constraint
no longer applies to a column that uses the domain as its type.

DROP DOMAIN

drop domain statement

<drop domain statement> ::= DROP DOMAIN <domain name> <drop behavior>

Destroy a domain. If <drop behavior> is not CASCADE, an exception is raised if the domain is already used in
any database object. When CASCADE is specified, it works differently from most other cascading operations. If a table
features a column that has specified DOMAIN, the column survives and inherits the base data type of the domain.
The default clause and the check constraint of the DOMAIN no longer apply to the column (this behaviour is different
from the SQL Standard).

Trigger Creation
CREATE TRIGGER

trigger definition

<trigger definition> ::= CREATE TRIGGER <trigger name> <trigger action time>
<trigger event> ON <table name> [REFERENCING <transition table or variable
list>] <triggered action>

<trigger action time> ::= BEFORE | AFTER | INSTEAD OF

<trigger event> ::= INSERT | DELETE | UPDATE [OF <trigger column list>]

<trigger column list> ::= <column name list>

<triggered action> ::= [FOR EACH { ROW | STATEMENT }] [<triggered when
clause>] <triggered SQL statement>

<triggered when clause> ::= WHEN <left paren> <search condition> <right paren>

<triggered SQL statement> ::= <SQL procedure statement> | BEGIN ATOMIC { <SQL
procedure statement> <semicolon> }... END | [QUEUE <integer literal>] [NOWAIT]
CALL <HSQLDB trigger class FQN>

<transition table or variable list> ::= <transition table or variable>...

<transition table or variable> ::= OLD [ROW] [AS] <old transition variable
name> | NEW [ROW] [AS] <new transition variable name> | OLD TABLE [AS]
<old transition table name> | NEW TABLE [AS] <new transition table name>

Schemas and Database Objects

64

<old transition table name> ::= <transition table name>

<new transition table name> ::= <transition table name>

<transition table name> ::= <identifier>

<old transition variable name> ::= <correlation name>

<new transition variable name> ::= <correlation name>

Trigger definition is a relatively complex statement. The combination of <trigger action time> and
<trigger event> determines the type of the trigger. Examples include BEFORE DELETE, AFTER UPDATE,
INSTEAD OF INSERT. If the optional [OF <trigger column list>] is specified for an UPDATE trigger,
then the trigger is activated only if one of the columns that is in the <trigger column list> is specified in
the UPDATE statement that activates the trigger.

If a trigger is FOR EACH ROW, which is the default option, then the trigger is activated for each row of the table
that is affected by the execution of an SQL statement. Otherwise, it is activated once only per statement execution. In
the first case, there is a before and after state for each row. For UPDATE triggers, both before and after states exist,
representing the row before the update, and after the update. For DELETE, triggers, there is only a before state. For
INSERT triggers, there is only an after state. If a trigger is FOR EACH STATEMENT, then a transient table is created
containing all the rows for the before state and another transient table is created for the after state.

The [REFERENCING <transition table or variable>] is used to give a name to the before and after
data row or table. This name can be referenced in the <SQL procedure statement> to access the data.

The optional <triggered when clause> is a search condition, similar to the search condition of a DELETE or
UPDATE statement. If the search condition is not TRUE for a row, then the trigger is not activated for that row.

The <SQL procedure statement> is limited to INSERT, DELETE, UPDATE and MERGE statements.

The <HSQLDB trigger class FQN> is a delimited identifier that contains the fully qualified name of a Java
class that implements the org.hsqldb.Trigger interface.

HyperSQL does not yet allow the use of OLD TABLE or NEW TABLE in statement level trigger definitions.

DROP TRIGGER

drop trigger statement

<drop trigger statement> ::= DROP TRIGGER <trigger name>

Destroy a trigger.

Routine Creation

schema routine

SQL-invoked routine

<SQL-invoked routine> ::= <schema routine>

<schema routine> ::= <schema procedure> | <schema function>

<schema procedure> ::= CREATE <SQL-invoked procedure>

<schema function> ::= CREATE <SQL-invoked function>

Schemas and Database Objects

65

<SQL-invoked procedure> ::= PROCEDURE <schema qualified routine name> <SQL
parameter declaration list> <routine characteristics> <routine body>

<SQL-invoked function> ::= { <function specification> | <method specification
designator> } <routine body>

<SQL parameter declaration list> ::= <left paren> [<SQL parameter declaration>
[{ <comma> <SQL parameter declaration> }...]] <right paren>

<SQL parameter declaration> ::= [<parameter mode>] [<SQL parameter name>]
<parameter type> [RESULT]

<parameter mode> ::= IN | OUT | INOUT

<parameter type> ::= <data type>

<function specification> ::= FUNCTION <schema qualified routine name>
<SQL parameter declaration list> <returns clause> <routine characteristics>
[<dispatch clause>]

<method specification designator> ::= SPECIFIC METHOD <specific method name>
| [INSTANCE | STATIC | CONSTRUCTOR] METHOD <method name> <SQL parameter
declaration list> [<returns clause>] FOR <schema-resolved user-defined type
name>

<routine characteristics> ::= [<routine characteristic>...]

<routine characteristic> ::= <language clause> | <parameter style clause> |
SPECIFIC <specific name> | <deterministic characteristic> | <SQL-data access
indication> | <null-call clause> | <returned result sets characteristic> |
<savepoint level indication>

<savepoint level indication> ::= NEW SAVEPOINT LEVEL | OLD SAVEPOINT LEVEL

<returned result sets characteristic> ::= DYNAMIC RESULT SETS <maximum returned
result sets>

<parameter style clause> ::= PARAMETER STYLE <parameter style>

<dispatch clause> ::= STATIC DISPATCH

<returns clause> ::= RETURNS <returns type>

<returns type> ::= <returns data type> [<result cast>] | <returns table type>

<returns table type> ::= TABLE <table function column list>

<table function column list> ::= <left paren> <table function column list
element> [{ <comma> <table function column list element> }...] <right paren>

<table function column list element> ::= <column name> <data type>

<result cast> ::= CAST FROM <result cast from type>

<result cast from type> ::= <data type> [<locator indication>]

<returns data type> ::= <data type> [<locator indication>]

Schemas and Database Objects

66

<routine body> ::= <SQL routine spec> | <external body reference>

<SQL routine spec> ::= [<rights clause>] <SQL routine body>

<rights clause> ::= SQL SECURITY INVOKER | SQL SECURITY DEFINER

<SQL routine body> ::= <SQL procedure statement>

<external body reference> ::= EXTERNAL [NAME <external routine name>]
[<parameter style clause>]

<parameter style> ::= SQL | GENERAL

<deterministic characteristic> ::= DETERMINISTIC | NOT DETERMINISTIC

<SQL-data access indication> ::= NO SQL | CONTAINS SQL | READS SQL DATA |
MODIFIES SQL DATA

<null-call clause> ::= RETURNS NULL ON NULL INPUT | CALLED ON NULL INPUT

<maximum returned result sets> ::= <unsigned integer>

Define an SQL-invoked routine. A few of the options are not used by HyperSQL and have default behaviours. See the
SQL-Invoked Routines chapter for more details of various options and examples.

ALTER routine

alter routine statement

<alter routine statement> ::= ALTER <specific routine designator> [<alter
routine characteristics>] [RESTRICT] <routine body>

<alter routine characteristics> ::= <alter routine characteristic>...

<alter routine characteristic> ::= <language clause> | <parameter style clause>
| <SQL-data access indication> | <null-call clause> | <returned result sets
characteristic>

<alter routine body> ::= <SQL routine body>

Alter the characteristic and the body of an SQL-invoked routine. If RESTRICT is specified and the routine is already
used in a different routine or view definition, an exception is raised. Altering the routine changes the implementation
without changing the parameters. Defining recursive SQL/PSM SQL functions is only possible by altering a non-
recursive routine body. An example is given in the SQL-Invoked Routines chapter.

An example is given below for a function defined as a Java method, then redefined as an SQL function.

 CREATE FUNCTION zero_pad(x BIGINT, digits INT, maxsize INT)
 RETURNS CHAR VARYING(100)
 SPECIFIC zero_pad_01
 NO SQL DETERMINISTIC
 LANGUAGE JAVA
 EXTERNAL NAME 'CLASSPATH:org.hsqldb.lib.StringUtil.toZeroPaddedString';

 ALTER SPECIFIC ROUTINE zero_pad_01
 LANGUAGE SQL
 BEGIN ATOMIC
 DECLARE str VARCHAR(128);
 SET str = CAST(x AS VARCHAR(128));
 SET str = SUBSTRING('0000000000000' FROM 1 FOR digits - CHAR_LENGTH(str)) + str;

Schemas and Database Objects

67

 return str;
 END

DROP

drop routine statement

<drop routine statement> ::= DROP <specific routine designator> <drop behavior>

Destroy an SQL-invoked routine.

Sequence Creation
CREATE SEQUENCE

sequence generator definition

<sequence generator definition> ::= CREATE SEQUENCE [IF NOT EXISTS] <sequence
generator name> [<sequence generator options>]

<sequence generator options> ::= <sequence generator option> ...

<sequence generator option> ::= <sequence generator data type option> | <common
sequence generator options>

<common sequence generator options> ::= <common sequence generator option> ...

<common sequence generator option> ::= <sequence generator start with option>
| <basic sequence generator option>

<basic sequence generator option> ::= <sequence generator increment by option>
| <sequence generator maxvalue option> | <sequence generator minvalue option>
| <sequence generator cycle option>

<sequence generator data type option> ::= AS <data type>

<sequence generator start with option> ::= START WITH <sequence generator start
value>

<sequence generator start value> ::= <signed numeric literal>

<sequence generator increment by option> ::= INCREMENT BY <sequence generator
increment>

<sequence generator increment> ::= <signed numeric literal>

<sequence generator maxvalue option> ::= MAXVALUE <sequence generator max value>
| NO MAXVALUE

<sequence generator max value> ::= <signed numeric literal>

<sequence generator minvalue option> ::= MINVALUE <sequence generator min value>
| NO MINVALUE

<sequence generator min value> ::= <signed numeric literal>

<sequence generator cycle option> ::= CYCLE | NO CYCLE

Schemas and Database Objects

68

Define a named sequence generator. A SEQUENCE object generates a sequence of integers according to the specified
rules. The simple definition without the options defines a sequence of numbers in INTEGER type starting at 1 and
incrementing by 1. By default, the CYCLE property is set and the minimum and maximum limits are the minimum
and maximum limits of the type of returned values. There are self-explanatory options for changing various properties
of the sequence. The MAXVALUE and MINVALUE specify the upper and lower limits. If CYCLE is specified, after the
sequence returns the highest or lowest value in range, the next value will respectively be the lowest or highest value in
range. If NO CYCLE is specified, the use of the sequence generator results in an error once the limit has been reached.

The integer types: SMALLINT, INTEGER, BIGINT, DECIMAL and NUMERIC can be used as the type of the
sequence. DECIMAL and NUMERIC types must have a scale of 0 and a precision not exceeding 18.

ALTER SEQUENCE

alter sequence generator statement

<alter sequence generator statement> ::= ALTER SEQUENCE <sequence generator
name> <alter sequence generator options>

<alter sequence generator options> ::= <alter sequence generator option>...

<alter sequence generator option> ::= <alter sequence generator restart option>
| <basic sequence generator option>

<alter sequence generator restart option> ::= RESTART [WITH <sequence generator
restart value>]

<sequence generator restart value> ::= <signed numeric literal>

Change the definition of a named sequence generator. The same options that are used in the definition of the
SEQUENCE can be used to alter it. The exception is the option for the start value which is RESTART WITH for the
ALTER SEQUENCE statement.

If RESTART is used by itself (without a value), then the current value of the sequence is reset to the start value.
Otherwise, the current value is reset to the given restart value.

DROP SEQUENCE

drop sequence generator statement

<drop sequence generator statement> ::= DROP SEQUENCE [IF EXISTS] <sequence
generator name> [IF EXISTS] <drop behavior>

Destroy an external sequence generator. If the <drop behavior> is CASCADE, then all objects that reference the
sequence are dropped. These objects can be VIEW, ROUTINE or TRIGGER objects.

SQL Procedure Statement

SQL procedure statement

SQL procedure statement

The definition of CREATE TRIGGER and CREATE PROCEDURE statements refers to <SQL procedure
statement>. The definition of this element is given below. However, only a subset of these statements is allowed
in trigger or routine definition.

<SQL procedure statement> ::= <SQL executable statement>

Schemas and Database Objects

69

<SQL executable statement> ::= <SQL schema statement> | <SQL data statement>
| <SQL control statement> | <SQL transaction statement> | <SQL connection
statement> | <SQL session statement> | <SQL diagnostics statement> | <SQL dynamic
statement>

<SQL schema statement> ::= <SQL schema definition statement> | <SQL schema
manipulation statement>

<SQL schema definition statement> ::= <schema definition> | <table definition> |
<view definition> | <SQL-invoked routine> | <grant statement> | <role definition>
| <domain definition> | <character set definition> | <collation definition> |
<transliteration definition> | <assertion definition> | <trigger definition> |
<user-defined type definition> | <user-defined cast definition> | <user-defined
ordering definition> | <transform definition> | <sequence generator definition>

<SQL schema manipulation statement> ::= <drop schema statement> | <alter table
statement> | <drop table statement> | <drop view statement> | <alter routine
statement> | <drop routine statement> | <drop user-defined cast statement> |
<revoke statement> | <drop role statement> | <alter domain statement> | <drop
domain statement> | <drop character set statement> | <drop collation statement>
| <drop transliteration statement> | <drop assertion statement> | <drop trigger
statement> | <alter type statement> | <drop data type statement> | <alter
sequence generator statement> | <drop sequence generator statement>

Other Schema Objects Creation and Alteration

CREATE SYNONYM

create synonym statement

<create synonym statement> ::= CREATE SYNONYM <synonym name> FOR <target object
name>

Creates a synonym for the <target object name>. The synonym is defined in the current schema, unless the
name is qualified with a different schema name. The target object name can be a schema object in the current schema
or in another schema. The synonym can be used only without the schema name.

DROP SYNONYM

drop synonym statement

<drop synonym statement> ::= DROP SYNONYM <synonym name>

Drops the synonym. The <synonym name> can be the simple name of the synonym or qualified with the schema
name.

CREATE INDEX

create index statement

<create index statement> ::= CREATE INDEX [IF NOT EXISTS] <index name> ON
<table name> <left paren> {<column name> [ASC | DESC]}, ... <right paren>

Creates an index on a group of columns of a table. The optional [ASC | DESC] specifies if the column is indexed in
the ascending or descending order, but has no effect on how the index is created (it is allowed for compatibility with
other database engines). HyperSQL can use all indexes in ascending or descending order as needed. Indexes should

Schemas and Database Objects

70

not duplicate the columns of PRIMARY KEY, UNIQUE or FOREIGN key constraints as each of these constraints
creates an index automatically.

DROP INDEX

drop index statement

<drop index statement> ::= DROP INDEX [IF EXISTS] <index name> [IF EXISTS]

Destroy an index.

ALTER INDEX

change the columns of an index

<alter index statement> ::= ALTER INDEX <index name> <left paren> {<column
name>} , ... <right paren>

Redefine an index with a new column list. This statement is more efficient than dropping an existing index and creating
a new one.

ALTER CONSTRAINT

alter foreign key constraint definition

<alter constraint definition> ::= ALTER CONSTRAINT <constraint name> INDEX ADD
<left paren> <extra column list> <right paren>

Add extra columns to the index of a FOREIGN KEY constraint. Only the index is extended over the extra columns
and the FOREIGN KEY does not change. If the statement is used again, the previous extra columns of the index are
replaced with the new extra columns. The FOREIGN KEY must have a user-defined name.

CREATE TYPE

user-defined type definition

<user-defined type definition> ::= CREATE TYPE <user-defined type body>

<user-defined type body> ::= <schema-resolved user-defined type name> [AS
<representation>]

<representation> ::= <predefined type>

Define a user-defined type. Currently only simple distinct types can be defined without further attributes.

CREATE CAST

user-defined cast definition

<user-defined cast definition> ::= CREATE CAST <left paren> <source data type>
AS <target data type> <right paren> WITH <cast function> [AS ASSIGNMENT]

<cast function> ::= <specific routine designator>

<source data type> ::= <data type>

<target data type> ::= <data type>

Define a user-defined cast. This feature may be supported in a future version of HyperSQL.

Schemas and Database Objects

71

DROP CAST

drop user-defined cast statement

<drop user-defined cast statement> ::= DROP CAST <left paren> <source data type>
AS <target data type> <right paren> <drop behavior>

Destroy a user-defined cast. This feature may be supported in a future version of HyperSQL.

CREATE CHARACTER SET

character set definition

<character set definition> ::= CREATE CHARACTER SET <character set name> [AS]
<character set source> [<collate clause>]

<character set source> ::= GET <character set specification>

Define a character set. A new CHARACTER SET is based on an existing CHARACTER SET. The optional
<collate clause> specifies the collation to be used, otherwise the collation is inherited from the default collation
for the source CHARACTER SET. Currently this statement has no effect, as the character set used by HyperSQL is
Unicode and there is no need for subset character sets.

DROP CHARACTER SET

drop character set statement

<drop character set statement> ::= DROP CHARACTER SET <character set name>

Destroy a character set. If the character set name is referenced in any database object, the command fails. Note that
CASCADE or RESTRICT cannot be specified for this command.

CREATE COLLATION

collation definition

<collation definition> ::= CREATE COLLATION <collation name> FOR <character set
specification> FROM <existing collation name> [<pad characteristic>]

<existing collation name> ::= <collation name>

<pad characteristic> ::= NO PAD | PAD SPACE

Define a collation. A new collation is based on an existing COLLATION and applies to an existing CHARACTER
SET. The <character set specification> is always SQL_TEXT. The <existing collation name>
is either SQL_TEXT or one of the language collations supported by HyperSQL. The <pad characteristic>
specifies whether strings are padded with spaces for comparison.

This statement is typically used when a collation is required that does not pad spaces before comparing two strings.
For example, CREATE COLLATION FRENCH_NOPAD FOR INFORMATION_SCHEMA.SQL_TEXT FROM
"French" NO PAD, results in a French collation without padding. This collation can be used for sorting or for
individual columns of tables.

DROP COLLATION

drop collation statement

Schemas and Database Objects

72

<drop collation statement> ::= DROP COLLATION <collation name> <drop behavior>

Destroy a collation. If the <drop behavior> is CASCADE, then all references to the collation revert to the default
collation that would be in force if the dropped collation was not specified.

CREATE TRANSLATION

transliteration definition

<transliteration definition> ::= CREATE TRANSLATION <transliteration name> FOR
<source character set specification> TO <target character set specification>
FROM <transliteration source>

<source character set specification> ::= <character set specification>

<target character set specification> ::= <character set specification>

<transliteration source> ::= <existing transliteration name> | <transliteration
routine>

<existing transliteration name> ::= <transliteration name>

<transliteration routine> ::= <specific routine designator>

Define a character transliteration. This feature may be supported in a future version of HyperSQL.

DROP TRANSLATION

drop transliteration statement

<drop transliteration statement> ::= DROP TRANSLATION <transliteration name>

Destroy a character transliteration. This feature may be supported in a future version of HyperSQL.

CREATE ASSERTION

assertion definition

<assertion definition> ::= CREATE ASSERTION <constraint name> CHECK <left paren>
<search condition> <right paren> [<constraint characteristics>]

Specify an integrity constraint. This feature may be supported in a future version of HyperSQL.

DROP ASSERTION

drop assertion statement

<drop assertion statement> ::= DROP ASSERTION <constraint name> [<drop
behavior>]

Destroy an assertion. This feature may be supported in a future version of HyperSQL.

The Information Schema
The Information Schema is a special schema in each catalog. The SQL Standard defines a number of character sets
and domains in this schema. In addition, all the implementation-defined collations belong to the Information Schema.

Schemas and Database Objects

73

The SQL Standard defines many views in the Information Schema. These views show the properties of the database
objects that currently exist in the database. When a user accesses one these views, only the properties of database
objects that the user can access are included.

HyperSQL supports all the views defined by the Standard, apart from a few views that report on extended user-defined
types and other optional features of the Standard that are not supported by HyperSQL.

HyperSQL also adds some views to the Information Schema. These views are for features that are not reported in any
of the views defined by the Standard, or for use by JDBC DatabaseMetaData.

References to Database Objects

Each database object may reference other database objects. For example, a VIEW references tables in its SELECT
statement. An SQL FUNCTION or PROCEDURE typically references tables, views, other routines, and sequences.
There are views in the INFORMATION_SCHEMA with the word "USAGE" in the name. Each of these views lists
references to objects of a particular type from a particular type, for example references to tables from routines.

From version 2.5.0, a new SQL statement lists all the database objects that use (reference) a particular database object.
Alternatively, the statement lists all the database object that are used (referenced) by a particular database object.

EXPLAIN REFERENCES

explain references

<explain references statement> ::= EXPLAIN REFERENCES { TO | FROM } { TABLE |
VIEW | DOMAIN | TYPE | SPACIFIC ROUTINE | SEQUENCE > <object name>

For example, EXPLAIN REFERENCES TO TABLE T1.

Predefined Character Sets, Collations and Domains

The SQL Standard defines a number of character sets and domains in the INFORMATION SCHEMA.

These domains are used in the INFORMATION SCHEMA views:

CARDINAL_NUMBER, YES_OR_NO, CHARACTER_DATA, SQL_IDENTIFIER, TIME_STAMP

All available collations are in the INFORMATION SCHEMA.

Views in INFORMATION SCHEMA

HyperSQL supports a vast range of views in the INFORMATION_SCHEMA. These include views specified
by the SQL Standard, SQL/Schemata part, plus views that are specific to HyperSQL and are used for JDBC
DatabaseMetaData queries, which are based on SQL/CLI part, or other information that is not covered by the SQL
Standard. The names of views that are not part of SQL/Schemata start with SYSTEM_.

The views cover different types of information. These are covered in the next sections.

Visibility of Information

Users with the special ADMIN role can see the full information on all database objects. Ordinary, non-admin users
can see information on the objects for which they have some privileges.

The rows returned to a non-admin user exclude objects on which the user has no privilege. The extent of the information
in visible rows varies with the user's privilege. For example, the owner of a VIEW can see the text of the view query,

Schemas and Database Objects

74

but a user of the view cannot see this text. When a user cannot see the contents of some column, null is returned for
that column.

Name Information
The names of database objects are stored in hierarchical views. The top level view is
INFORMATION_SCHEMA_CATALOG_NAME.

Below this level, there is a group of views that covers authorizations and roles, without referencing schema objects.
These are AUTHORIZATIONS and ADMINSTRABLE_ROLE_AUTHORIZATIONS.

Also below the top level, there is the SCHEMATA view, which lists the schemas in the catalog.

The views that refer to top-level schema objects are divided by object type. These includes
ASSERTIONS, CHARACTER_SETS, COLLATIONS, DOMAINS, ROUTINES, SEQUENCES, TABLES,
USER_DEFINED_TYPES and VIEWS.

There are views that refer to objects that are dependent on the top-level schema objects. These include COLUMNS
and PARAMETERS, views for constraints, including CHECK_CONSTRAINTS, REFERENTIAL_CONSTRAINTS
and TABLE_CONSTRAINTS, and finally the TRIGGERS view.

The usage of each type of top-level object by another is covered by several views. For example,
TRIGGER_SEQUENCE_USAGE or ROUTINE_TABLE_USAGE.

Several other views list the individual privileges owned or granted to each AUTHORIZATION. For example,
ROLE_ROUTINE_GRANTS or TABLE_PRIVILEGES.

Data Type Information
The INFORMATION_SCHEMA contains comprehensive information on the data types of each schema object and
its elements. For example, the ROUTINES view includes the return data type for each FUNCTION definition. The
columns for this information contain nulls for rows that cover PROCEDURE definitions.

The COLUMNS, PARAMETERS and SEQUENCES views contain the type information in columns with similar
names.

The type information for ARRAY types is returned in the ELEMENT_TYPES view. When a row of the COLUMNS
or other view indicates that the type of the object is an ARRAY type, then there is a corresponding entry for this row in
the ELEMENT_TYPES view. The following columns in the ELEMENTS_TYPES view identify the database object
whose data type is being described: OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_NAME, OBJECT_TYPE,
COLLECTION_TYPE_IDENTIFIER. The last column's counterpart in the COLUMNS view is named differently as
DTD_IDENTIFIER. So in order to determine the array element type of a column, an equi-join between the COLUMNS
and ELEMENT_TYPES tables on the six listed columns in the ELEMENT_TYPES view and their counterparts in
the COLUMNS view is needed.

Product Information
A group of views, including SQL_IMPLEMENTATION_INFO, SQL_FEATURES, SQL_SIZING and others cover
the capabilities of HyperSQL in detail. These views hold static data and can be explored even when the database is
empty.

Operations Information
There are some HyperSQL custom views cover the current state of operation of the database. These include
SYSTEM_CACHEINFO, SYSTEM_SESSIONINFO and SYSTEM_SESSIONS views.

Schemas and Database Objects

75

SQL Standard Views

The following views are defined by the SQL Standard and supported by HyperSQL. The columns and contents exactly
match the Standard requirements.

ADMINISTRABLE_ROLE_AUTHORIZATIONS

Information on ROLE authorizations, all granted by the admin role.

APPLICABLE_ROLES

Information on ROLE authorizations for the current user

ASSERTIONS

Empty view as ASSERTION objects are not yet supported.

AUTHORIZATIONS

Top level information on USER and ROLE objects in the database

CHARACTER_SETS

List of supported CHARACTER SET objects

CHECK_CONSTRAINTS

Additional information specific to each CHECK constraint, including the search condition

CHECK_CONSTRAINT_ROUTINE_USAGE

Information on FUNCTION objects referenced in CHECK constraints search conditions

COLLATIONS

Information on collations supported by the database.

COLUMNS

Information on COLUMN objects in TABLE and VIEW definitions

COLUMN_COLUMN_USAGE

Information on references to COLUMN objects from other, GENERATED, COLUMN objects

COLUMN_DOMAIN_USAGE

Information on DOMAIN objects used in type definition of COLUMN objects

COLUMN_PRIVILEGES

Information on privileges on each COLUMN object, granted to different ROLE and USER authorizations

COLUMN_UDT_USAGE

Information on distinct TYPE objects used in type definition of COLUMN objects

CONSTRAINT_COLUMN_USAGE

Schemas and Database Objects

76

Information on COLUMN objects referenced by CONSTRAINT objects in the database

CONSTRAINT_PERIOD_USAGE

Information on application PERIOD objects referenced by CONSTRAINT objects in the database

CONSTRAINT_TABLE_USAGE

Information on TABLE and VIEW objects referenced by CONSTRAINT objects in the database

DATA_TYPE_PRIVILEGES

Information on top level schema objects of various kinds that reference TYPE objects

DOMAINS

Top level information on DOMAIN objects in the database.

DOMAIN_CONSTRAINTS

Information on CONSTRAINT definitions used for DOMAIN objects

ELEMENT_TYPES

Information on the type of elements of ARRAY used in database columns or routine parameters and return values

ENABLED_ROLES

Information on ROLE privileges enabled for the current session

INFORMATION_SCHEMA_CATALOG_NAME

Information on the single CATALOG object of the database

KEY_COLUMN_USAGE

Information on COLUMN objects of tables that are used by PRIMARY KEY, UNIQUE and FOREIGN KEY
constraints

KEY_PERIOD_USAGE

Information on application PERIOD objects that are used by PRIMARY KEY, UNIQUE and FOREIGN KEY
constraints

PARAMETERS

Information on parameters of each FUNCTION or PROCEDURE

PERIODS

Information on PERIOD objects defined in tables

REFERENTIAL_CONSTRAINTS

Additional information on FOREIGN KEY constraints, including triggered action and name of UNIQUE constraint
they refer to

ROLE_AUTHORIZATION_DESCRIPTORS

Schemas and Database Objects

77

ROLE_COLUMN_GRANTS

Information on privileges on COLUMN objects granted to or by the current session roles

ROLE_ROUTINE_GRANTS

Information on privileges on FUNCTION and PROCEDURE objects granted to or by the current session roles

ROLE_TABLE_GRANTS

Information on privileges on TABLE and VIEW objects granted to or by the current session roles

ROLE_UDT_GRANTS

Information on privileges on TYPE objects granted to or by the current session roles

ROLE_USAGE_GRANTS

Information on privileges on USAGE privileges granted to or by the current session roles

ROUTINE_COLUMN_USAGE

Information on COLUMN objects of different tables that are referenced in FUNCTION and PROCEDURE definitions

ROUTINE_JAR_USAGE

Information on JAR usage by Java language FUNCTION and PROCEDURE objects.

ROUTINE_PERIOD_USAGE

Information on table PERIOD objects referenced in FUNCTION and PROCEDURE objects.

ROUTINE_PRIVILEGES

Information on EXECUTE privileges granted on PROCEDURE and FUNCTION objects

ROUTINE_ROUTINE_USAGE

Information on PROCEDURE and FUNCTION objects that are referenced in FUNCTION and PROCEDURE
definitions

ROUTINE_SEQUENCE_USAGE

Information on SEQUENCE objects that are referenced in FUNCTION and PROCEDURE definitions

ROUTINE_TABLE_USAGE

Information on TABLE and VIEW objects that are referenced in FUNCTION and PROCEDURE definitions

ROUTINES

Top level information on all PROCEDURE and FUNCTION objects in the database

SCHEMATA

Information on all the SCHEMA objects in the database

SEQUENCES

Schemas and Database Objects

78

Information on SEQUENCE objects

SQL_FEATURES

List of all SQL:2011 standard features, including information on whether they are supported or not supported by
HyperSQL

SQL_IMPLEMENTATION_INFO

Information on name, capabilities and defaults of the database engine software.

SQL_PACKAGES

List of SQL:2011 Standard packages, including information on whether they are supported or not supported by
HyperSQL

SQL_PARTS

List of the SQL:2011 Standard parts, including information on whether they are supported or not supported by
HyperSQL

SQL_SIZING

List of the SQL:2011 Standard maximum supported sizes for different features as supported by HyperSQL

SQL_SIZING_PROFILES

TABLES

Information on all TABLE and VIEW object, including the INFORMATION_SCHEMA views themselves

TABLE_CONSTRAINTS

Information on all table level constraints, including PRIMARY KEY, UNIQUE, FOREIGN KEY and CHECK
constraints

TABLE_PRIVILEGES

Information on privileges on TABLE and VIEW objects owned or given to the current user

TRANSLATIONS

TRIGGERED_UPDATE_COLUMNS

Information on columns that have been used in TRIGGER definitions in the ON UPDATE clause

TRIGGERS

Top level information on the TRIGGER definitions in the databases

TRIGGER_COLUMN_USAGE

Information on COLUMN objects that have been referenced in the body of TRIGGER definitions

TRIGGER_PERIOD_USAGE

Information on PERIOD objects that have been referenced in the body of TRIGGER definitions

TRIGGER_ROUTINE_USAGE

Schemas and Database Objects

79

Information on FUNCTION and PROCEDURE objects that have been used in TRIGGER definitions

TRIGGER_SEQUENCE_USAGE

Information on SEQUENCE objects that been referenced in TRIGGER definitions

TRIGGER_TABLE_USAGE

Information on TABLE and VIEW objects that have been referenced in TRIGGER definitions

USAGE_PRIVILEGES

Information on USAGE privileges granted to or owned by the current user

USER_DEFINED_TYPES

Top level information on TYPE objects in the database

VIEWS

Top Level information on VIEW objects in the database

VIEW_COLUMN_USAGE

Information on COLUMN objects referenced in the query expressions of the VIEW objects

VIEW_PERIOD_USAGE

Information on PERIOD objects referenced in the query expressions of the VIEW objects

VIEW_ROUTINE_USAGE

Information on FUNCTION and PROCEDURE objects that have been used in the query expressions of the VIEW
objects

VIEW_TABLE_USAGE

Information on TABLE and VIEW objects that have been referenced in the query expressions of the VIEW objects

HyperSQL Custom Views

The following views are specific to HyperSQL. Most of these views are used directly by JDBC DatabaseMetaData
method calls and are indicated as such. Some views contain information that is specific to HyperSQL and is not covered
by the SQL Standard views.

SYSTEM_BESTROWIDENTIFIER

For DatabaseMetaData.getBestRowIdentifier

SYSTEM_CACHEINFO

Contains the current settings and variables of the data cache used for all CACHED tables, and the data cache of each
TEXT table.

SYSTEM_COLUMN_SEQUENCE_USAGE

Contains a row for each column that is defined as GENERATED BY DEFAULT AS SEQUENCE with the column
name and sequence name

Schemas and Database Objects

80

SYSTEM_COLUMNS

For DatabaseMetaData.getColumns, contains a row for each column

SYSTEM_COMMENTS

Contains the user-defined comments added to tables and their columns. Also informational comments on
INFORMATION_SCHEMA views

SYSTEM_CONNECTION_PROPERTIES

For DatabaseMetaData.getClientInfoProperties

SYSTEM_CROSSREFERENCE

Full list of all columns referenced by FOREIGN KEY constraints. For DatabaseMetaData.getCrossReference,
getExportedKeys and getImportedKeys.

SYSTEM_INDEXINFO

For DatabaseMetaData.getIndexInfo

SYSTEM_KEY_INDEX_USAGE

List of system-generated index names for each PRIMARY KEY, UNIQUE and FOREIGN KEY constraint.

SYSTEM_PRIMARYKEYS

For DatabaseMetaData.getPrimaryKeys

SYSTEM_PROCEDURECOLUMNS

For DatabaseMetaData.getProcedureColumns

SYSTEM_PROCEDURES

For DatabaseMetaData.getFunctionColumns, getFunctions and getProcedures

SYSTEM_PROPERTIES

Contains the current values of all the database level properties. Settings such as SQL rule enforcement, database
transaction model and default transaction level are all reported in this view. The names of the properties are listed in
the Properties chapter together with the corresponding SQL statements used to change the properties.

SYSTEM_SCHEMAS

For DatabaseMetaData.getSchemas

SYSTEM_SEQUENCES

SYSTEM_SESSIONINFO

Information on the settings and properties of the current session.

SYSTEM_SESSIONS

Information on all open sessions in the database (when used by a DBA user), or just the current session. Includes the
current transaction state of each session.

Schemas and Database Objects

81

SYSTEM_TABLES

Information on tables and views for DatabaseMetaData.getTables

SYSTEM_TABLESTATS

Information on table spaces and cardinality for each table

SYSTEM_TABLETYPES

For DatabaseMetaData.getTableTypes

SYSTEM_TEXTTABLES

Information on the settings of each text table.

SYSTEM_TYPEINFO

For DatabaseMetaData.getTypeInfo

SYSTEM_UDTS

For DatabaseMetaData.getUDTs

SYSTEM_USERS

Contains the list of all users in the database (when used by a DBA user), or just the current user.

SYSTEM_VERSIONCOLUMNS

For DatabaseMetaData.getVersionColumns. Contains list of columns of system PERIOD and those with ON UPDATE
CURRENT TIMESTAMP.

82

Chapter 4. Built In Functions

Fred Toussi, The HSQL Development Group
$Revision: 6621 $

Copyright 2010-2022 Fred Toussi. Permission is granted to distribute this document without any alteration
under the terms of the HSQLDB license. Additional permission is granted to the HSQL Development Group
to distribute this document with or without alterations under the terms of the HSQLDB license.
2022-10-20

Overview
HyperSQL supports a wide range of built-in functions and allows user-defined functions written in SQL and Java
languages. User-defined functions are covered in the SQL-Invoked Routines chapter. If a built-in function is not
available, you can write your own using procedural SQL or Java.

Built-in aggregate functions such as SUM, MAX, ARRAY_AGG, GROUP_CONCAT are covered in the Data Access
and Change chapter, which covers SQL in general. SQL expressions such as COALESCE, NULLIF and CAST are
also discussed there.

The built-in functions fall into three groups:

• SQL Standard Functions

A wide range of functions defined by SQL/Foundation are supported. SQL/Foundation functions that have no
parameter are called without empty parentheses. Functions with multiple parameters often use keywords instead of
commas to separate the parameters. Many functions are overloaded. Among these, some have one or more optional
parameters that can be omitted, while the return type of some functions is dependent upon the type of one of the
parameters. The usage of SQL Standard Functions (where they can be used) is covered more extensively in the
Data Access and Change chapter

• JDBC Open Group CLI Functions

These functions were defined as an extension to the CLI standard, which is the basis for ODBC and JDBC and
supported by many database products. JDBC supports an escape mechanism to specify function calls in SQL
statements in a manner that is independent of the function names supported by the target database engine. For
example SELECT {fn DAYOFMONTH (dateColumn)} FROM myTable can be used in JDBC and is
translated to Standard SQL as SELECT EXTRACT (DAY_OF_MONTH FROM dateColumn) FROM myTable
if a database engine supports the Standard syntax. If a database engine does not support Standard SQL, then the
translation will be different. HyperSQL supports all the function names specified in the JDBC specifications as
native functions. Therefore, there is no need to use the {fn FUNC_NAME (...) } escape with HyperSQL.
If a JDBC function is supported by the SQL Standard in a different form, the SQL Standard form is the preferred
form to use.

• HyperSQL Built-In Functions

Many additional built-in functions are available for some useful operations. Some of these functions return the
current setting for the session and the database. The General Functions accept arguments of different types and
return values based on comparison between the arguments.

In the BNF specification used here, words in capital letters are actual tokens. Syntactic elements such as expressions
are enclosed in angle brackets. The <left paren> and <right paren> tokens are represented with the actual

Built In Functions

83

symbol. Optional elements are enclosed with square brackets (<left bracket> and <right bracket>).
Multiple options for a required element are enclosed with braces (<left brace> and <right brace>).
Alternative tokens are separated with the vertical bar (<vertical bar>). At the end of each function definition,
the standard which specifies the function is noted in parentheses as JDBC or HyperSQL, or the SQL:2016 Standard.

String and Binary String Functions
In SQL, there are three kinds of string: character, binary and bit. The units are respectively characters, octets, and
bits. Each kind of string can be in different data types. CHAR, VARCHAR and CLOB are the character data types.
BINARY, VARBINARY and BLOB are the binary data types. BIT and BIT VARYING are the bit string types. In all
string functions, the position of a unit of the string within the whole string is specified from 1 to the length of the whole
string. In the BNF, <char value expr> indicates any valid SQL expression that evaluates to a character type.
Likewise, <binary value expr> indicates a binary type and <num value expr> indicates a numeric type.

ASCII

ASCII (<char value expr>)

Returns an INTEGER equal to the ASCII code value of the first character of <char value expr>. (JDBC)

ASCIISTR

ASCIISTR (<char value expr>)

Returns the ASCII representation of the string argument with all characters outside the range 32-126 replaced with
Unicode escape codes. (HyperSQL)

BIT_LENGTH

BIT_LENGTH (<string value expression>)

BIT_LENGTH can be used with character, binary and bit strings. It return a BIGINT value that measures the bit length
of the string. (SQL:2016)

See also CHARACTER_LENGTH and OCTET_LENGTH.

CHAR

CHAR (<UNICODE code>)

The argument is an INTEGER. Returns a character string containing a single character that has the specified
<UNICODE code>, which is an integer. ASCII codes are a subset of the allowed values for <UNICODE code>.
(JDBC)

CHARACTER_LENGTH

{ CHAR_LENGTH | CHARACTER_LENGTH } (<char value expression> [USING { CHARACTERS
| OCTETS }])

The CHAR_LENGTH or CHARACTER_LENGTH function can be used with character strings, while
OCTET_LENGTH can be used with character or binary strings and BIT_LENGTH can be used with character, binary
and bit strings.

All functions return a BIGINT value that measures the length of the string in the given unit. CHAR_LENGTH counts
characters, OCTET_LENGTH counts octets and BIT_LENGTH counts bits in the string. For CHAR_LENGTH, if
[USING OCTETS] is specified, the octet count is returned, which is twice the normal length. (SQL:2016)

Built In Functions

84

CONCAT

CONCAT (<char value expr 1>, <char value expr 2> [, ...])

CONCAT (<binary value expr 1>, <binary value expr 2> [, ...])

The arguments are character strings or binary strings. Returns a string formed by concatenation of the arguments.
Minimum number of arguments is 2. Equivalent to the SQL concatenation expression <value expr 1> ||
<value expr 2> [|| ...] .

Handling of null values in the CONCAT function depends on the database property sql.concat_nulls (SET
DATABASE SQL SYNTAX CONCAT NULLS { TRUE || FALSE }). By default, any null value will cause the
function to return null. If the property is set false, then NULL values are replaced with empty strings.

(JDBC)

CONCAT_WS

CONCAT_WS (<char value separator>, <char value expr 1>, <char value expr 2>
[, ...])

The arguments are character strings. Returns a string formed by concatenation of the arguments from the second
argument, using the separator from the first argument. Minimum number of arguments is 3. Equivalent to the SQL
concatenation expression <value expr 1> || <separator> || <value expr 2> [|| ...] . The
function ignores null values and returns an empty string if all values are null. It returns null only if the separator is null.

This function is similar to a MySQL function of the same name.

(HyperSQL)

DIFFERENCE

DIFFERENCE (<char value expr 1>, <char value expr 2>)

The arguments are character strings. Converts the arguments into SOUNDEX codes, and returns an INTEGER between
0-4 which indicates how similar the two SOUNDEX value are. If the values are the same, it returns 4, if the values
have no similarity, it returns 0. In-between values are returned for partial similarity. (JDBC)

FROM_BASE64

FROM_BASE64(<character value expr>)

Returns a binary string by converting from the base64 <character value expr>. (HyperSQL)

INSERT

INSERT (<char value expr 1>, <offset>, <length>, <char value expr 2>)

Returns a character string based on <char value expr 1> in which <length> characters have been removed
from the <offset> position and in their place, the whole <char value expr 2> is copied. Equivalent to SQL/
Foundation OVERLAY(<char value expr1> PLACING < char value expr2> FROM <offset>
FOR <length>) . (JDBC)

INSTR

INSTR (<char value expr 1>, <char value expr 2> [, <offset>])

Built In Functions

85

Returns as a BIGINT value the starting position of the first occurrence of <char value expr 2> within <char
value expr 1>. If <offset> is specified, the search begins with the position indicated by <offset>. If the
search is not successful, 0 is returned. Similar to the LOCATE function but the order of the arguments is reversed.
(HyperSQL)

HEX

HEX(<binary value expr>)

HEX(<numeric value expr>)

Returns a character string of hexadecimal digits and letters representing the <binary value expr>. Exactly the
same as the RAWTOHEX function. With <numeric value expr> the hexadecimal digits represent the number
in base 16 (HyperSQL)

HEXTORAW

HEXTORAW(<char value expr>)

Returns a binary string formed by translation of hexadecimal digits and letters in the <char value expr>. Each
character of the <char value expr> must be a digit or a letter in the A | B | C | D | E | F set. Each byte of the
retired binary string is formed by translating two hex digits into one byte. (HyperSQL)

LCASE

LCASE (<char value expr>)

Returns a character string that is the lower-case version of the <char value expr>. Equivalent to SQL/Foundation
LOWER (<char value expr>). (JDBC)

LEFT

LEFT (<char value expr>, <count>)

Returns a character string consisting of the first <count> characters of <char value expr>. Equivalent to SQL/
Foundation SUBSTRING(<char value expr> FROM 0 FOR <count>). (JDBC)

LENGTH

LENGTH (<char value expr>)

Returns as a BIGINT value the number of characters in <char value expr>. Equivalent to SQL/Foundation
CHAR_LENGTH(<char value expr>). (JDBC)

LOCATE

LOCATE (<char value expr 1>, <char value expr 2> [, <offset>])

Returns as a BIGINT value the starting position of the first occurrence of <char value expr 1> within <char
value expr 2>. If <offset> is specified, the search begins with the position indicated by <offset>. If the
search is not successful, 0 is returned. Without the third argument, LOCATE is equivalent to the SQL Standard function
POSITION(<char value expr 1> IN <char value expr 2>). (JDBC)

LOWER

LOWER (<char value expr>)

Returns a character string that is the lower-case version of the <char value expr>. (SQL:2016)

Built In Functions

86

LPAD

LPAD (<char value expr 1>, <length> [, <char value expr 2>])

Returns a character string with the length of <length> characters. The string contains the characters of <char
value expr 1> padded to the left with spaces. If <length> is smaller than the length of the string argument,
the argument is truncated. If the optional <char value expr 2> is specified, this string is used for padding,
instead of spaces. (HyperSQL)

LTRIM

LTRIM (<char value expr 1> [, <char value expr 2>])

When called with a single argument, returns a character string based on <char value expr 1> with the
leading space characters removed. Equivalent to SQL/Foundation TRIM(LEADING ' ' FROM <char value
expr1>). When called with two arguments, <char value expr 2> represents the leading character to be
removed. (JDBC)

OCTET_LENGTH

OCTET_LENGTH (<string value expression>)

The OCTET_LENGTH function can be used with character or binary strings.

Return a BIGINT value that measures the length of the string in octets. When used with character strings,
the octet count is returned, which is twice the normal length. (SQL:2016)

OVERLAY

OVERLAY (<char value expr 1> PLACING <char value expr 2>

FROM <start position> [FOR <string length>] [USING CHARACTERS])

OVERLAY (<binary value expr 1> PLACING <binary value expr 2>

FROM <start position> [FOR <string length>])

The character version of OVERLAY returns a character string based on <char value expr 1> in which <string
length> characters have been removed from the <start position> and in their place, the whole <char
value expr 2> is copied.

The binary version of OVERLAY returns a binary string formed in the same manner as the character version.
(SQL:2016)

POSITION

POSITION (<char value expr 1> IN <char value expr 2> [USING CHARACTERS])

POSITION (<binary value expr 1> IN <binary value expr 2>)

The character and binary versions of POSITION search the string value of the second argument for the first occurrence
of the first argument string. If the search is successful, the position in the string is returned as a BIGINT. Otherwise
zero is returned. (SQL:2016)

RAWTOHEX

RAWTOHEX(<binary value expr>)

Built In Functions

87

Returns a character string composed of hexadecimal digits representing the bytes in the <binary value expr>.
Each byte of the <binary value expr> is translated into two hex digits. (HyperSQL)

REGEXP_COUNT

REGEXP_COUNT (<char value expr>, <regular expression>)

Returns as an INTEGER value the number of regions of the <char value expr> that match the <regular
expression>. The <regular expression> is defined according to Java language regular expression rules.
Returns 0 if no match is found. (HyperSQL)

REGEXP_INSTR

REGEXP_INSTR (<char value expr>, <regular expression>)

Returns as an INTEGER value the starting position of the first region of the <char value expr> that matches
the <regular expression>. The <regular expression> is defined according to Java language regular
expression rules. Returns 0 if no match is found. (HyperSQL)

REGEXP_LIKE

REGEXP_LIKE (<char value expr>, <regular expression>)

REGEXP_MATCHES

REGEXP_MATCHES (<char value expr>, <regular expression>)

Both functions return true if the <char value expr> matches the <regular expression> as a whole. The
<regular expression> is defined according to Java language regular expression rules. (HyperSQL)

REGEXP_REPLACE

REGEXP_REPLACE (<char value expr>, <regular expression> [, <replace char value
expr> [, <start position> [, <replace count> [, <options>]]]])

Replaces <char value expr 1> regions that match the <regular expression> with <replace char
value expr>. This last parameter is optional and defaults to the empty string. The rest of the parameters are also
optional. The <start position> parameter is not implemented and must be 1 if used. The <replace count>
parameter is 0 by default, which means replace all occurrences, or it can be 1, which means replace only the first
occurrence. The <options> parameter is a string which can contain: 'i' for case-insensitive compare, 'c' for Unicode
case, 'n' for the '.' also to match any line terminator, and 'm' for multi-line matches. The <regular expression>
is defined according to Java language regular expression rules. (HyperSQL)

REGEXP_SUBSTR

REGEXP_SUBSTR (<char value expr>, <regular expression>)

REGEXP_SUBSTRING

REGEXP_SUBSTRING (<char value expr>, <regular expression>)

Both functions return the first region in the <char value expr> that matches the <regular expression>.
The <regular expression> is defined according to Java language regular expression rules. (HyperSQL)

REGEXP_SUBSTRING_ARRAY

REGEXP_SUBSTRING_ARRAY (<char value expr>, <regular expression>)

Built In Functions

88

Returns all the regions in the <char value expr> that match the <regular expression>. The <regular
expression> is defined according to Java language regular expression rules. Returns an array containing the
matching regions (HyperSQL)

REPEAT

REPEAT (<char value expr>, <count>)

Returns a character string based on <char value expr>, repeated <count> times. (JDBC)

REPLACE

REPLACE (<char value expr 1>, <char value expr 2> [, <char value expr 3>])

Returns a character string based on <char value expr 1> where each occurrence of <char value expr
2> has been replaced with a copy of <char value expr 3>. If the function is called with just two arguments, the
<char value expr 3> defaults to the empty string and calling the function simply removes the occurrences of <char
value expr 2> from the first string.(JDBC)

REVERSE

REVERSE (<char value expr>)

Returns a character string based on <char value expr> with characters in the reverse order. (HyperSQL)

RIGHT

RIGHT (<char value expr>, <count>)

Returns a character string consisting of the last <count> characters of <char value expr>. (JDBC)

RPAD

RPAD (<char value expr 1>, <length> [, <char value expr 2>])

Returns a character string with the length of <length> characters. The string begins with the characters of <char
value expr 1> padded to the right with spaces. If <length> is smaller than the length of the string argument,
the argument is truncated. If the optional <char value expr 2> is specified, this string is used for padding,
instead of spaces. (HyperSQL)

RTRIM

RTRIM (<char value expr 1> [, <char value expr 2>])

When called with a single argument, returns a character string based on <char value expr 1> with the
trailing space characters removed. Equivalent to SQL/Foundation TRIM(TRAILING ' ' FROM <character
string>). When called with two arguments, <char value expr 2> represents the trailing character to be
removed. (JDBC)

SOUNDEX

SOUNDEX (<char value expr>)

Returns a four-character code representing the sound of <char value expr>. The US census algorithm is used.
For example, the soundex value for "Washington" is W252. This function is used for storing the soundex of names in
a column of a table, then searching this column for strings matching the soundex of the search string, then comparing
the actual names stored in the database with the search string. (JDBC)

Built In Functions

89

SPACE

SPACE (<count>)

Returns a character string consisting of <count> spaces. (JDBC)

SUBSTR

{ SUBSTR | SUBSTRING } (<char value expr>, <offset>, <length>)

The JDBC version of SQL/Foundation SUBSTRING returns a character string that consists of <length> characters
from <char value expr> starting at the <offset> position. (JDBC)

SUBSTRING

SUBSTRING (<char value expr> FROM <start position> [FOR <string length>]
[USING CHARACTERS])

SUBSTRING (<binary value expr> FROM <start position> [FOR <string length>])

The character version of SUBSTRING returns a character string that consists of the characters of the <char value
expr> from <start position>. If the optional <string length> is specified, only <string length>
characters are returned.

The binary version of SUBSTRING returns a binary string in the same manner. (SQL:2016)

TO_BASE64

TO_BASE64(<binary value expr>)

Returns a character string as a base 64 representation of the bytes in the <binary value expr>. (HyperSQL)

TRIM

TRIM ([[LEADING | TRAILING | BOTH] [<trim character>] FROM] <char value
expr>)

TRIM ([[LEADING | TRAILING | BOTH] [<trim octet>] FROM] <binary value expr>)

The character version of TRIM returns a character string based on <char value expr>. Consecutive instances
of <trim character> are removed from the beginning, the end or both ends of the<char value expr>
depending on the value of the optional first qualifier [LEADING | TRAILING | BOTH]. If no qualifier
is specified, BOTH is used as default. If [<trim character>] is not specified, the space character is used
as default.

The binary version of TRIM returns a binary string based on <binary value expr>. Consecutive instances of
<trim octet> are removed in the same manner as in the character version. If [<trim octet>] is not
specified, the 0 octet is used as default. (SQL:2016)

TRANSLATE

TRANSLATE(<char value expr1>, <char value expr2>, <char value expr3>)

Returns a character string based on <char value expr1> source. Each character of the source is checked against
the characters in <char value expr2>. If the character is not found, it is not modified. If the character is found,
then the character in the same position in <char value expr3> is used. If <char value expr2> is longer
than <char value expr3>, then those characters at the end that have no counterpart in <char value expr3>
are dropped from the result. (HyperSQL)

Built In Functions

90

 -- in this example any accented character in acolumn is replaced with one without an accent
 TRANSLATE(acolumn, 'ÁÇÉÍÓÚÀÈÌÒÙÂÊÎÔÛÃÕËÜáçéíóúàèìòùâêîôûãõëü',
 'ACEIOUAEIOUAEIOUAOEUaceiouaeiouaeiouaoeu');

UCASE

UCASE (<char value expr>)

Returns a character string that is the upper case version of the <char value expr>. Equivalent to SQL/Foundation
UPPER(<char value expr>). (JDBC)

UPPER

UPPER (<char value expr>)

Returns a character string that is the upper case version of the <char value expr> . (SQL:2016)

UNHEX

UNHEX(<char value expr>)

Returns a binary string formed by translation of hexadecimal digits and letters in the <char value expr>. Exactly
the same as the HEXTORAW function. (HyperSQL)

UNISTR

UNISTR(<char value expr>)

Returns a string formed by translation of hexadecimal escape sequences in the <char value expr> to UTF-16
characters. Exactly the opposite of ASCIISTR function. (HyperSQL)

JSON Functions
JSON constructor functions convert SQL data into JSON values, These functions are supported by HyperSQL
according to the SQL:2016 Standard. Each function returns a JSON object or JSON array as a string. The format
conforms to the IETF rfc:7159 document, The JavaScript Object Notation (JSON) Data Interchange Format.

In the BNF, <JSON value expr> indicates any valid SQL expression that evaluates to a single value. This includes
strings, numbers and booleans. Binary values are represented as hexadecimal strings. All other types, including dates
and timestamps, are represented as strings. An optional FORMAT JSON is used when the result of the value expression
is already a string in the JSON format.

<JSON value expr> ::= <value expression> [FORMAT JSON]

The optional <JSON constructor null clause> indicates whether NULL values are represented as JSON
nulls or are omitted from the result. The default behaviour is ABSENT ON NULL for JSON_ARRAY, and NULL ON
NULL for JSON_OBJECT.

<JSON null clause> ::= NULL ON NULL | ABSENT ON NULL

The optional <JSON output clause> allows you to change the maximum length of the returned string from
the default 32K bytes.

<JSON output clause> ::= RETURNING VARCHAR(N)

JSON function calls can be nested to construct more complex objects containing arrays, objects, and arrays of objects.

Built In Functions

91

JSON_ARRAY

JSON_ARRAY (<JSON value expr>, ... [<JSON null caluse>] [<JSON output caluse>])

The first form of JSON_ARRAY is a variable argument function, It converts the values from a series of value expression
into a single JSON array.

JSON_ARRAY (<query expression> [FORMAT JSON] [<JSON null caluse>] [<JSON
output caluse>])

The second form of JSON_ARRAY converts the values from a single <query expression> into a JSON array.
(SQL:2016)

-- a JSON array is constructed from a single row of the table

SELECT JSON_ARRAY(country_id , name, local_name) FROM places.countries WHERE country_id = 'ESP'

C1

["ESP","Spain","España"]

-- a JSON array is constructed from all rows of the table

VALUES JSON_ARRAY(SELECT name FROM countries)

C1

["Austria","Switzerland","Germany","Spain","France","Italy","Sweden"]

JSON_ARRAYAGG

JSON_ARRAYAGG (<JSON value expr> [<order by clause>] [<JSON null caluse>])

JSON_ARRAYAGG is an aggregate function similar to the ARRAY_AGG SQL function, It evaluates a value expression
over a series of rows and combines the values, separated by commas, into a single JSON array. Returns a JSON string.
(SQL:2016)

-- a JSON array is constructed from all rows of the table

SELECT JSON_ARRAYAGG(country_id) FROM places.countries

C1

["AUT","CHE","DEU","ESP","FRA","ITA","SWE"]

JSON_OBJECT

JSON_OBJECT (<JSON name and value>, ... [<JSON null caluse>] [{ WITH | WITHOUT }
UNIQUE [KEYS]])

JSON_OBJECT is a variable argument function, It combines a series of keys and values into a single JSON object.
Returns a JSON string.

There are two supported syntax forms for key:value pairs.

<JSON name and value> ::= <JSON name> <colon> <JSON value expression> | [KEY]
<JSON name> VALUE <JSON value expression>

Built In Functions

92

The optional WITH UNIQUE KEYS clause forces an error if the keys within the JSON object are not unique. The
default is WITHOUT UNIQUE KEYS. (SQL:2016)

-- a JSON object is constructed from each row of the table; both syntax options are shown

SELECT country_id, JSON_OBJECT(country_id : name) FROM places.countries

SELECT country_id, JSON_OBJECT(KEY country_id VALUE name) FROM places.countries

COUNTRY_ID C2
---------- ---------------------
AUT {"AUT":"Austria"}
CHE {"CHE":"Switzerland"}
DEU {"DEU":"Germany"}
ESP {"ESP":"Spain"}
FRA {"FRA":"France"}
ITA {"ITA":"Italy"}
SWE {"SWE":"Sweden"}

JSON_OBJECTAGG

JSON_OBJECTAGG (<JSON name and value> [<JSON null caluse>] [{ WITH | WITHOUT }
UNIQUE [KEYS]])

JSON_OBJECTAGG is an aggregate function similar to the ARRAY_AGG SQL function, It constructs a JSON object
by using keys and values from the aggregated rows. (SQL:2016)

-- a JSON object is constructed from multiple rows of the table

SELECT JSON_OBJECTAGG(country_id : name) FROM places.countries

C1

{"AUT":"Austria","CHE":"Switzerland","DEU":"Germany","ESP":"Spain","FRA":"France","ITA":"Italy","SWE":"Sweden"}

Numeric Functions
ABS

ABS (<num value expr> | <interval value expr>)

Returns the absolute value of the argument as a value of the same type. (JDBC and SQL:2016)

ACOS

ACOS (<num value expr>)

Returns the arc-cosine of the argument in radians as a value of DOUBLE type. (JDBC)

ASIN

ASIN (<num value expr>)

Returns the arc-sine of the argument in radians as a value of DOUBLE type. (JDBC)

ATAN

ATAN (<num value expr>)

Built In Functions

93

Returns the arc-tangent of the argument in radians as a value of DOUBLE type. (JDBC)

ATAN2

ATAN2 (<num value expr 1>, <num value expr 2>)

The <num value expr 1> and <num value expr 2> express the x and y coordinates of a point. Returns
the angle, in radians, representing the angle coordinate of the point in polar coordinates, as a value of DOUBLE type.
(JDBC)

CEILING

{ CEIL | CEILING } (<num value expr>)

Returns the smallest integer greater than or equal to the argument. If the argument is exact numeric then the result is
exact numeric with a scale of 0. If the argument is approximate numeric, then the result is of DOUBLE type. (JDBC
and SQL:2016)

BITAND

BITAND (<num value expr 1>, <num value expr 2>)

BITAND (<bit value expr 1>, <bit value expr 2>)

BITANDNOT

BITANDNOT (<num value expr 1>, <num value expr 2>)

BITANDNOT (<bit value expr 1>, <bit value expr 2>)

BITNOT

BITNOT (<num value expr 1>)

BITNOT (<bit value expr 1>)

BITOR

BITOR (<num value expr 1>, <num value expr 2>)

BITOR (<bit value expr 1>, <bit value expr 2>)

BITXOR

BITXOR (<num value expr 1>, <num value expr 2>)

BITXOR (<bit value expr 1>, <bit value expr 2>)

These functions perform bit operations on two values, or in the case of BITNOT on a single value. The values are
either integer values, or bit strings. The result is an integer value of the same type as the arguments, or a bit string of
the same length as the argument. Each bit of the result is formed by performing the operation on corresponding bits
of the arguments. The names of the function indicate NOT, OR, AND, XOR operations. The BITANDNOT performs
NOT on the second argument, then performs AND on result and the first argument. (HyperSQL)

COS

COS (<num value expr>)

Returns the cosine of the argument (an angle expressed in radians) as a value of DOUBLE type. (JDBC)

Built In Functions

94

COSH

COSH (<num value expr>)

Returns the hyperbolic cosine of the argument as a value of DOUBLE type. (HyperSQL)

COT

COT (<num value expr>)

Returns the cotangent of the argument as a value of DOUBLE type. The <num value expr> represents an angle
expressed in radians. (JDBC)

DEGREES

DEGREES (<num value expr>)

Converts the argument (an angle expressed in radians) into degrees and returns the value in the DOUBLE type.
(JDBC)

EXP

EXP (<num value expr>)

Returns the exponential value of the argument as a value of DOUBLE type. (JDBC and SQL:2016)

FLOOR

FLOOR (<num value expr>)

Returns the largest integer that is less than or equal to the argument. If the argument is exact numeric then the result is
exact numeric with a scale of 0. If the argument is approximate numeric, then the result is of DOUBLE type. (JDBC
and SQL:2016)

LN

LN (<num value expr>)

Returns the natural logarithm of the argument, as a value of DOUBLE type. (SQL:2016)

LOG

LOG (<num value expr>)

Returns the natural logarithm of the argument, as a value of DOUBLE type. (JDBC)

LOG10

LOG10 (<num value expr>)

Returns the base 10 logarithm of the argument as a value of DOUBLE type. (JDBC)

MOD

MOD (<num value expr 1>, <num value expr 2>)

Returns the remainder (modulus) of <num value expr 1> divided by <num value expr 2>. The data type
of the returned value is the same as the second argument. (JDBC and SQL:2016)

Built In Functions

95

NANVL

NANVL (<num value expr 1>, <num value expr 2>)

Returns an alternative for the NaN (Not a Number) double value in <num value expr 1> as <num value
expr 2>., otherwise returns the first argument. The data type of the returned value is DOUBLE. (HyperSQL)

PI

PI ()

Returns the constant pi as a value of DOUBLE type. (JDBC)

POWER

POWER (<num value expr 1>, <num value expr 2>)

Returns the value of <num value expr 1> raised to the power of <int value expr 2> as a value of
DOUBLE type. (JDBC and SQL:2016)

RADIANS

RADIANS (<num value expr>)

Converts the argument (an angle expressed in degrees) into radians and returns the value in the DOUBLE type.
(JDBC)

RAND

RAND ([<int value expr>])

Returns a random value in the DOUBLE type. The optional [<int value expr>] is used as seed value. In
HyperSQL each session has a separate random number generator. The first call that uses a seed parameter sets the seed
for subsequent calls that do not include a parameter. (JDBC)

ROUND

ROUND (<num value expr>, <int value expr>)

The <num value expr> is of the DOUBLE type or DECIMAL type. The function returns a DOUBLE or
DECIMAL value which is the value of the argument rounded to <int value expr> places right of the decimal
point. If <int value expr> is negative, the first argument is rounded to <int value expr> places to the
left of the decimal point.

This function rounds values ending with .5 or larger away from zero for DECIMAL arguments and results. When
the value ends with .5 or larger and the argument and result are DOUBLE, It rounds the value towards the closest
even value.

The datetime version is discussed in the next section. (JDBC)

SIGN

SIGN (<num value expr>)

Returns an INTEGER, indicating the sign of the argument. If the argument is negative then -1 is returned. If it is equal
to zero then 0 is returned. If the argument is positive then 1 is returned. (JDBC)

SIN

Built In Functions

96

SIN (<num value expr>)

Returns the sine of the argument (an angle expressed in radians) as a value of DOUBLE type. (JDBC)

SINH

SINH (<num value expr>)

Returns the hyperbolic sine of the argument as a value of DOUBLE type. (HyperSQL)

SQRT

SQRT (<num value expr>)

Returns the square root of the argument as a value of DOUBLE type. (JDBC and SQL:2016)

TAN

TAN (<num value expr>)

Returns the tangent of the argument (an angle expressed in radians) as a value of DOUBLE type. (JDBC)

TANH

TANH (<num value expr>)

Returns the hyperbolic tangent of the argument as a value of DOUBLE type. (HyperSQL)

TO_NUMBER

TO_NUMBER (<char value expr>)

Performs a cast from character to DECIMAL number. The character string must consist of digits and can have a
decimal point. Use the SQL Standard CAST expression instead of this non-standard function. (HyperSQL)

TRUNC

TRUNC (<num value expr> [, <int value expr>])

This is a similar to the TRUNCATE function when the first argument is numeric. If the second argument is omitted,
zero is used in its place.

The datetime version is discussed in the next section. (HyperSQL)

TRUNCATE

TRUNCATE (<num value expr> [, <int value expr>])

Returns a value in the same type as <num value expr> but may reduce the scale of DECIMAL and NUMERIC
values. The value is rounded by replacing digits with zeros from <int value expr> places right of the decimal
point to the end. If <int value expr> is negative, ABS(<int value expr>) digits to left of the decimal
point and all digits to the right of the decimal points are replaced with zeros. Results of calling TRUNCATE with
12345.6789 with (-2, 0, 2, 4) are (12300, 12345, 12345.67, 12345.6789). The function does not change the number if
the second argument is larger than or equal to the scale of the first argument.

If the second argument is not a constant (when it is a parameter or column reference) then the type of the return value
is always the same as the type of the first argument. In this case, the discarded digits are replaced with zeros. (JDBC)

WIDTH_BUCKET

Built In Functions

97

WIDTH_BUCKET (<value expr 1> , <value expr 2>, <value expr 3>, <int value expr>)

Returns an integer value between 0 and <int value expr> + 1. The initial three parameters are of the same
numeric or datetime type. The range, (<value expr 2> , <value expr 3>) is divided into <int value
expr> equal sections (buckets). The returned integer value indicates the index of the bucket where <value expr
1> can be placed. If the <value expr 1> falls before or after the range, the return value is 0 or <value expr
1> + 1 respectively.

This function can be used with numeric or datetime values. Invalid arguments, including <int value expr>
smaller than 1, or equal values for <value expr 2> and <value expr 3> will cause an exception. (SQL:2016)

An example is given below:

 WIDTH_BUCKET(5, 10, 110, 10)
 0

 WIDTH_BUCKET(23, 10, 110, 10)
 2

 WIDTH_BUCKET(100, 10, 110, 10)
 10

 WIDTH_BUCKET(200, 10, 110, 10)
 11

Date Time and Interval Functions
Functions to report the time zone.

Functions to Report the Time Zone.

TIMEZONE

TIMEZONE()

Returns the current time zone for the session. This value is the same as SESSION_TIMEZONE if the user has not
changed the TIME ZONE of the session. Returns an INTERVAL HOUR TO MINUTE value. (HyperSQL)

SESSION_TIMEZONE

SESSION_TIMEZONE()

Returns the default time zone for the current session. This value is based on the default Java Calendar for the current
session. Returns an INTERVAL HOUR TO MINUTE value. (HyperSQL)

SESSIONTIMEZONE

SESSIONTIMEZONE()

Similar to SESSION_TIMEZONE but converts the INTERVAL to a VARCHAR. (HyperSQL)

DATABASE_TIMEZONE

DATABASE_TIMEZONE()

Returns the time zone for the database engine. This is based on where the database server process is located. Returns
an INTERVAL HOUR TO MINUTE value. (HyperSQL)

Built In Functions

98

DBTIMEZONE

DBTIMEZONE()

Similar to DATABASE_TIMEZONE. Returns a string. Works in ORA compatibility mode only.(HyperSQL)

Functions to Report the Current Datetime

CURRENT_DATE

CURRENT_DATE

CURRENT_TIME

CURRENT_TIME [(<time precision>)]

LOCALTIME

LOCALTIME [(<time precision>)]

CURRENT_TIMESTAMP

CURRENT_TIMESTAMP [(<timestamp precision>)]

LOCALTIMESTAMP

LOCALTIMESTAMP [(<timestamp precision>)]

These datetime functions return the datetime value representing the moment the function is called. CURRENT_DATE
returns a value of DATE type. CURRENT_TIME returns a value of TIME WITH TIME ZONE type. LOCALTIME
returns a value of TIME type. CURRENT_TIMESTAMP returns a value of TIMESTAMP WITH TIME ZONE type.
LOCALTIMESTAMP returns a value of TIMESTAMP type. The time zone of the SQL session is used. If the optional
[(<time precision>)] or [(<timestamp precision>)] is used, then the returned value has
the specified fraction of the second precision. When the functions are used multiple times in a single SQL statement,
the returned values represent the same point of time.

From version 2.7.0 the functions return values with microsecond precision. Previous versions returned values with
millisecond precision. (SQL:2016)

NOW

NOW ()

This function is equivalent to LOCALTIMESTAMP. It can be used as a no-arg function as the parens are optional.
(HyperSQL)

CURDATE

CURDATE ()

This function is equivalent to CURRENT_DATE. (JDBC)

CURTIME

CURTIME ()

This function is equivalent to LOCALTIME. (JDBC)

Built In Functions

99

SYSDATE

SYSDATE

This no-arg function is similar to LOCALTIMESTAMP but it returns the timestamp without fraction of second.
(HyperSQL)

SYSTIMESTAMP

SYSTIMESTAMP

This no-arg function is similar to CURRENT_TIMESTAMP and is enabled in ORA syntax mode only. It returns the
timestamp when it is called. (HyperSQL)

TODAY

TODAY

This no-arg function is equivalent to CURRENT_DATE. (HyperSQL)

Functions to Extract an Element of a Datetime
DATENAME, DATEPART and EOMONTH

These functions are available in the MSS compatibility mode and perform the equivalent of EXTRACT function or
the LAST_DAY function. (HyperSQL)

DAYNAME

DAYNAME (<datetime value expr>)

This function is equivalent to EXTRACT (DAY_NAME FROM ...) Returns a string in the range of Sunday
- Saturday. (JDBC)

DAYOFMONTH

DAYOFMONTH (<datetime value expr>)

This function is equivalent to EXTRACT (DAY_OF_MONTH FROM ...) Returns an integer value in the
range of 1-31. (JDBC)

DAYOFWEEK

DAYOFWEEK (<datetime value expr>)

This function is equivalent to EXTRACT (DAY_OF_WEEK FROM ...) Returns an integer value in the range
of 1-7. The first day of the week is Sunday. (JDBC)

DAYOFYEAR

DAYOFYEAR (<datetime value expr>)

This function is equivalent to EXTRACT (DAY_OF_YEAR FROM ...) Returns an integer value in the range
of 1-366. (JDBC)

DAYS

DAYS (<datetime value expr>)

Built In Functions

100

The <datetime value expr> is of DATE or TIMESTAMP type. This function returns the DAY number since
the first day of the calendar. The first day is numbered 1. (HyperSQL)

HOUR

HOUR (<datetime value expr>)

This function is equivalent to EXTRACT (HOUR FROM ...) Returns an integer value in the range of 0-23.
(JDBC)

MINUTE

MINUTE (<datetime value expr>)

This function is equivalent to EXTRACT (MINUTE FROM ...) Returns an integer value in the range of
0 - 59. (JDBC)

MONTH

MONTH (<datetime value expr>)

This function is equivalent to EXTRACT (MONTH FROM ...) Returns an integer value in the range of 1-12.
(JDBC)

MONTHNAME

MONTHNAME (<datetime value expr>)

This function is equivalent to EXTRACT (NAME_OF_MONTH FROM ...) Returns a string in the range of
January - December. (JDBC)

QUARTER

QUARTER (<datetime value expr>)

This function is equivalent to EXTRACT (QUARTER FROM ...) Returns an integer in the range of 1 - 4. (JDBC)

SECOND

SECOND (<datetime value expr>)

This function is equivalent to EXTRACT (SECOND FROM ...) Returns a decimal in the range of 0 - 60, with
the same precision as the <datetime value expr>. (JDBC)

SECONDS_SINCE_MIDNIGHT

SECONDS_SINCE_MIDNIGHT (<datetime value expr>)

This function is equivalent to EXTRACT (SECONDS_SINCE_MIDNIGHT FROM ...) Returns an integer
in the range of 0 - 86399. (HyperSQL)

UNIX_MILLIS

UNIX_MILLIS ([<datetime value expression>])

This function returns a BIGINT value. With no parameter, it returns the number of milliseconds since 1970-01-01.
With a DATE or TIMESTAMP parameter, it converts the argument into number of milliseconds since 1970-01-01.
(HyperSQL)

Built In Functions

101

UNIX_TIMESTAMP

UNIX_TIMESTAMP ([<datetime value expression>])

This function returns a BIGINT value. With no parameter, it returns the number of seconds since 1970-01-01. With a
DATE or TIMESTAMP parameter, it converts the argument into number of seconds since 1970-01-01. See also the
TIMESTAMP (<num value expression>) function to return a TIMESTAMP from a Unix timestamp.
(HyperSQL)

WEEK

WEEK (<datetime value expr>)

This function is equivalent to EXTRACT (WEEK_OF_YEAR FROM ...) Returns an integer in the range
of 1 - 54. (JDBC)

YEAR

YEAR (<datetime value expr>)

This function is equivalent to EXTRACT (YEAR FROM ...) Returns an integer in the range of 1 - 9999. (JDBC)

EXTRACT

EXTRACT (<extract field> FROM <extract source>)

<extract field> ::= YEAR | MONTH | DAY | HOUR | MINUTE | DAY_OF_WEEK | WEEK_OF_YEAR
| QUARTER | DAY_OF_YEAR | DAY_OF_MONTH |

TIMEZONE_HOUR | TIMEZONE_MINUTE | SECOND | SECONDS_SINCE_MIDNIGHT |

DAY_NAME | MONTH_NAME

<extract source> ::= <datetime value expr> | <interval value expr>

The EXTRACT function returns a field or element of the <extract source>. The <extract source> is a
datetime or interval expression. The type of the return value is BIGINT for most of the <extract field> options.
The exception is SECOND, where a DECIMAL value is returned which has the same precision as the datetime or
interval expression. The field values DAY_NAME or MONTH_NAME result in a character string. When MONTH_NAME
is specified, a string in the range January - December is returned. When DAY_NAME is specified, a string in the range
Sunday -Saturday is returned.

If the <extract source> is FROM <datetime value expr>, different groups of <extract source> can
be used depending on the data type of the expression. The TIMEZONE_HOUR | TIMEZONE_MINUTE options are
valid only for TIME WITH TIMEZONE and TIMESTAMP WITH TIMEZONE data types. The HOUR | MINUTE
| SECOND | SECONDS_MIDNIGHT options, are valid for TIME and TIMESTAMP types. The rest of the fields
are valid for DATE and TIMESTAMP types.

If the <extract source> is FROM <interval value expr>, the <extract field> must be one of the
fields of the INTERVAL type of the expressions. The YEAR | MONTH options may be valid for INTERVAL types
based on months. The DAY | HOUR | MINUTE | SECOND | SECONDS_MIDNIGHT options may be valid
for INTERVAL types based on seconds. For example, DAY | HOUR | MINUTE are the only valid fields for the
INTERVAL DAY TO MINUTE data type. (SQL:2016 with HyperSQL extensions)

Functions for Datetime Arithmetic
NEXT_DAY

Built In Functions

102

NEXT_DAY (<datetime value expr>, <character value expr>)

This function returns a TIMESTAMP for compatibility reasons. The return value is the next weekday named
by the second argument that occurs after the first date. For example, next Wednesday is expressed as
NEXT_DAY(CURRENT_DATE, 'WEDNESDAY'). (HyperSQL)

ADD_MONTHS

ADD_MONTHS (<datetime value expr>, <numeric value expr>)

This function is similar but different to simple addition of a MONTH interval to a datetime value. The SQL Standard
expression, <datetime value expr> + n MONTH, when used with the last day of a short month such as
February, returns a date that has the same day of the month in the target month. The ADD_MONTHS function adjusts
the target day to the last day of the target month. For all other days, the behaviour is the same. This function always
returns a TIMESTAMP(0) value, regardless of the type of the argument. (HyperSQL)

The example below compares the output of the function and the expression.

 VALUES ADD_MONTHS (DATE '2012-02-29' , 1), DATE '2012-02-29' + 1 MONTH

 C1 C2
 ------------------- ----------
 2012-03-31 00:00:00 2012-03-29

LAST_DAY

LAST_DAY (<datetime value expr>)

Returns the last day of the month for the given <datetime value expr>. The returned value preserves the year,
month, hour, minute and second fields of the timestamp. The type of the result is always TIMESTAMP(0). (HyperSQL)

 VALUES LAST_DAY (TIMESTAMP '2012-02-14 12:30:44')

 C1

 2012-02-29 12:30:44

MONTHS_BETWEEN

MONTHS_BETWEEN (<datetime value expr1> , <datetime value expr2>)

Returns a number (not an INTERVAL) possibly with a fraction, representing the number of months between two days.
If both dates have the same day of month, or are on the last day of the month, the result is an exact numeric. Otherwise,
the fraction is calculated based on 31 days per month. You can cast the resulting value into INTERVAL MONTH and
use it for datetime arithmetic. (HyperSQL)

 VALUES MONTHS_BETWEEN (TIMESTAMP '2013-02-14 12:30:44', TIMESTAMP '2012-01-04 12:30:44')

 C1

 13.32258064516129000000000000000000

TIMESTAMPADD

TIMESTAMPADD (<tsi datetime field>, <numeric value expression>, <datetime value
expr>)

Built In Functions

103

TIMESTAMPDIFF

TIMESTAMPDIFF (<tsi datetime field>, <datetime value expr 1>, <datetime value
expr 2>)

<tsi datetime field> ::= SQL_TSI_FRAC_SECOND | SQL_TSI_MILLI_SECOND |
SQL_TSI_SECOND | SQL_TSI_MINUTE | SQL_TSI_HOUR | SQL_TSI_DAY | SQL_TSI_WEEK |
SQL_TSI_MONTH | SQL_TSI_QUARTER | SQL_TSI_YEAR

HyperSQL supports full SQL Standard datetime features. It supports adding integers representing units of time directly
to datetime values using the arithmetic plus operator. It also supports subtracting one <datetime value expr>
from another in the given units of date or time using the minus operator. An example of <datetime value expr>
+ <numeric value expression> <datetime field> is LOCALTIMESTAMP + 5 DAY. An example
of (<datetime value expr> - <numeric value expression>) <datetime field> is
(CURRENT_DATE - DATE '2008-08-8') MONTH which returns the number of calendar months between
the two dates.

The two JDBC functions, TIMESTAMPADD and TIMESTAMPDIFF perform a similar function to the above SQL
expressions. The <tsi datetime field> names are keywords and are different from those used in the EXTRACT functions.
These names are valid for use only when calling these two functions. With TIMESTAMPDIFF, the names indicate the
unit of time used to compute the difference between two datetime fields. With TIMESTAMPADD they represent the
unit of time used for the <numeric value expression>. The unit of time for each name is self-explanatory. In the case
of SQL_TSI_FRAC_SECOND, the unit is nanosecond.

The return value for TIMESTAMPADD is of the same type as the datetime argument used. The return type
for TIMESTAMPDIFF is always BIGINT, regardless of the type of arguments. The two datetime arguments of
TIMESTAMPDIFF should be of the same type. The TIME type is not supported for the arguments to these functions.

TIMESTAMPDIFF is evaluated as <datetime value expr 2> - <datetime value expr 1>. (JDBC)

 TIMESTAMPADD (SQL_TSI_MONTH, 3, DATE '2008-11-22')

 TIMESTAMPDIFF (SQL_TSI_HOUR, TIMESTAMP '2008-11-20 20:30:40', TIMESTAMP '2008-11-21 21:30:40')

DATE_ADD

DATE_ADD (<datetime value expr> , <interval value expr>)

DATE_SUB

DATE_SUB (<datetime value expr> , <interval value expr>)

These functions are equivalent to arithmetic addition and subtraction, <datetime value expr> + <interval value expr>
and <datetime value expr> - <interval value expr>. The functions are provided for compatibility with other databases.
The supported interval units are the standard SQL interval unit listed in other chapters of this guide. The TIME type
is supported for the argument to these functions. (HyperSQL)

 DATE_ADD (DATE '2008-11-22', INTERVAL 3 MONTH)

 DATE_SUB (TIMESTAMP '2008-11-22 20:30:40', INTERVAL 20 HOUR)

DATEADD

DATEADD (<field>, <numeric value expr>, <datetime value expr>)

Built In Functions

104

DATEDIFF

DATEDIFF (<field>, <datetime value expr 1>, <datetime value expr 2>)

<field> ::= 'yy' | 'year' | 'mm' | 'month' | 'dd' | 'day' | 'hh' | 'hour' |
'mi' | 'minute' | 'ss' | 'second' | 'ms' | 'millisecond'

<field> ::= YY | YEAR | MM | MONTH | DD | DAY | HH | HOUR | MI | MINUTE |
SS | SECOND | MS | MILLISECOND

The DATEADD and DATEDIFF functions are alternatives to TIMESTAMPADD and TIMESTAMPDIFF, with fewer
available field options. The field names are specified as strings or as keywords. The short field names translate to
YEAR, MONTH, DAY, HOUR, MINUTE, SECOND and MILLISECOND. DATEDIFF is evaluated as <datetime
value expr 2> - <datetime value expr 1>. (HyperSQL}

DATEDIFF (<datetime value expr 1>, <datetime value expr 2>)

This special form of DATEDIFF does not have a field parameter and return the number of days between two dates.
This form is evaluated as <datetime value expr 1> - <datetime value expr 2>, which is different
from the main form. This form is compatible with some other database engines. The TIME type is not supported for
the arguments to these functions. (HyperSQL}

 DATEADD ('month', 3, DATE '2008-11-22')

 DATEDIFF ('hour', TIMESTAMP '2008-11-22 20:30:40', TIMESTAMP '2008-11-22 00:30:40')

ROUND

ROUND (<datetime value expr> [, <char value expr>])

The <datetime value expr> is of DATE, TIME or TIMESTAMP type. The <char value expr> is a
format string for YEAR, MONTH, WEEK OF YEAR, DAY, HOUR, MINUTE or SECOND as listed in the table for
TO_CHAR and TO_DATE format elements (see below). The datetime value is rounded up or down after the specified
field and the rest of the fields to the right are set to one for MONTH and DAY, or zero, for the rest of the fields.
For example, rounding a timestamp value on the DAY field results in midnight the same date or midnight the next
day if the time is at or after 12 noon. If the second argument is omitted, the datetime value is rounded to the nearest
day. (HyperSQL)

TRUNC

TRUNC (<datetime value expr> [, <char value expr>])

Similar to the ROUND function, the <num value expr> is of DATE, TIME or TIMESTAMP type. The <char
value expr> is a format string (such as 'YY' or 'MM') for YEAR, MONTH, WEEK OF YEAR, DAY, HOUR,
MINUTE or SECOND as listed in the table for TO_CHAR and TO_DATE format elements (see below). The datetime
value is truncated after the specified field and the rest of the fields to the right are set to one for MONTH and DAY, or
zero, for the rest of the fields. For example, applying TRUNC to a timestamp value on the DAY field results in midnight
the same date. Examples of ROUND and TRUNC functions are given below. If the second argument is omitted, the
datetime value is truncated to midnight the same date. (HyperSQL)

 ROUND (TIMESTAMP'2008-08-01 20:30:40', 'YYYY')

 TIMESTAMP '2009-01-01 00:00:00'

 TRUNC (TIMESTAMP'2008-08-01 20:30:40', 'YYYY')

 TIMESTAMP '2008-01-01 00:00:00'

Built In Functions

105

Functions to Convert or Format a Datetime
FROM_TZ

FROM_TZ (<timestamp value expr>, <zone or interval spec string>)

This function takes the date-time (year, month, day, hour, minute, second, fraction) from the first argument and the
time zone from the second argument to construct a TIMESTAMP WITH TIME ZONE value. The output can represent
a different point of universal time (UTC) than the input. This is different from the AT TIME ZONE expression which
keeps the UTC value and changes the zone. (HyperSQL)

-- the output shows the same timestamp as the input, but with the time zone of the specified
 region
VALUES FROM_TZ(TIMESTAMP'2022-03-28 11:00:00+4:00','America/Chicago')
 C1

 2022-03-28 11:00:00.000000-5:00

-- this example has the same output as the previous one
VALUES FROM_TZ(TIMESTAMP'2022-03-28 11:00:00','-5:00')

NUMTODSINTERVAL

NUMTODSINTERVAL (<numeric value expr>, <interval spec string>)

This function converts the numeric value to an interval, exactly like CAST. The interval spec string is one of 'DAY',
'HOUR', 'MINUTE', 'SECOND'. (HyperSQL)

NUMTOYMINTERVAL

NUMTOYMINTERVAL (<numeric value expr>, <interval spec string>)

This function converts the numeric value to an interval, exactly like CAST. The interval spec string is 'YEAR' or
'MONTH'. (HyperSQL)

TIMESTAMP

TIMESTAMP (<num value expr>)

TIMESTAMP (<char value expr>)

TIMESTAMP (<char value expr>, <char value expr>)

TIMESTAMP (<date value expr>, <time value expr>)

This function translates the arguments into a TIMESTAMP WITHOUT TIME ZONE value.

When the single argument is a numeric value, it is interpreted as a Unix timestamp in seconds.

When the single argument is a formatted date or timestamp string, it is translated to a TIMESTAMP.

When two arguments are used, the first argument is the DATE part and the second argument is the TIME part of the
returned TIMESTAMP value. The types of the arguments can be DATE and TIME respectively, or they can be any
character string type. An example, including the result, is given below:

 TIMESTAMP ('2008-11-22', '20:30:40')

 TIMESTAMP '2008-11-22 20:30:40.000000'

Built In Functions

106

TIMESTAMP_WITH_ZONE

TIMESTAMP_WITH_ZONE (<num value expr>)

TIMESTAMP_WITH_ZONE (<char value expr>)

This function translates the arguments into a TIMESTAMP WITH TIME ZONE value.

When the single argument is a numeric value, it is interpreted as a Unix timestamp in seconds.

When the single argument is TIMESTAMP, it is converted to TIMESTAMP WITH TIME ZONE.

The time zone of the returned value is the local time zone at the time of the timestamp argument. This accounts for
daylight saving times. For example, if the local time zone was +4:00 at the time of the given Unix timestamp, the
returned value is local timestamp at the time with time zone +4:00.

TO_CHAR

TO_CHAR (<datetime value expr>, <char value expr>)

This function formats a datetime or numeric value to the format given in the second argument. The format string can
contain pattern elements from the list given below, plus punctuation and space characters. An example, including the
result, is given below:

 TO_CHAR (TIMESTAMP'2008-02-01 20:30:40', 'YYYY BC MONTH, DAY HH')

 2008 AD February, Friday 8

 TO_CHAR (TIMESTAMP'2008-02-01 20:30:40', '"The Date is" YYYY BC MONTH, DAY HH')

 The Date is 2008 AD February, Friday 8

The format is internally translated to a java.text.SimpleDateFormat format string. Separator characters
(space, comma, period, hyphen, colon, semicolon, forward slash) can be included between the pattern elements.
Unsupported format strings should not be used. You can include a string literal inside the format string by enclosing
it in double quotes (see the second example above). (HyperSQL)

TO_DATE

TO_DATE (<char value expr>, <char value expr>)

This function translates a formatted datetime sting to a TIMESTAMP(0) according to the format given in the second
argument. See TO_TIMESTAMP below for further details.

TO_TIMESTAMP

TO_TIMESTAMP (<char value expr>, <char value expr>)

This function translates a formatted datetime sting to a TIMESTAMP(6) according to the format given in the second
argument. The format string can contain pattern elements from the list given below, plus punctuation and space
characters. The pattern should contain all the necessary fields to construct a date, including, year, month, day of month,
etc. The returned timestamp can then be cast into DATE or TIME types if necessary. An example, including the result,
is given below:

 TO_TIMESTAMP ('22/11/2008 20:30:40', 'DD/MM/YYYY HH:MI:SS')

 TIMESTAMP '2008-11-22 20:30:40.000000'

Built In Functions

107

The format strings that can be used for TO_DATE and TO_TIMESTAMP are more restrictive than those used for
TO_CHAR, because the format string must contain the elements needed to build a full DATE or TIMESTAMP value.
For example, you cannot use the 'WW', 'W', 'HH' or 'HH12' format elements with TO_DATE or TO_TIMESTAMP

The format is internally translated to a java.text.SimpleDateFormat format string. Unsupported format
strings should not be used. With TO_CHAR, you can include a string literal inside the format string by enclosing it
in double quotes. (HyperSQL)

The supported format components are all uppercase as follows:

Table 4.1. TO_CHAR, TO_DATE and TO_TIMESTAMP format elements

BC | B.C. | AD | A.D. Returns AD for common era and BC for before common era

RRRR 4-digit year

YYYY 4-digit year

IYYY 4-digit year, corresponding to ISO week of the year. The reported year for the last
few days of the calendar year may be the next year.

YY 2 digit year

IY 2 digit year, corresponding to ISO week of the year

MM Month (01-12)

MON Short three-letter name of month

MONTH Name of month

WW Week of year (1-53) where week 1 starts on the first day of the year and continues
to the seventh day of the year (not a calendar week).

W Week of month (1-5) where week 1 starts on the first day of the month and ends
on the seventh (not a calendar week).

IW Week of year (1-52 or 1-53) based on the ISO standard. Week starts on Monday.
The first week may start near the end of previous year.

DAY Name of day.

DD Day of month (01-31).

DDD Day of year (1-366).

DY Short three-letter name of day.

HH Hour of day (00-11).

HH12 Hour of day (00-11).

HH24 Hour of day (00-23).

MI Minute (00-59).

SS Second (00-59).

FF Fractional seconds. Use without repetition.

Array Functions
Array functions are specialised functions with ARRAY parameters or return values. For the ARRAY_AGG aggregate
function, see the Data Access and Change chapter.

CARDINALITY

Built In Functions

108

CARDINALITY(<array value expr>)

Returns the element count for the given array argument. (SQL:2016)

MAX_CARDINALITY

MAX_CARDINALITY(<array value expr>)

Returns the maximum allowed element count for the given array argument. (SQL:2016)

POSITION_ARRAY

POSITION_ARRAY(<value expression> IN <array value expr> [FROM <int value
expr>])

Returns the position of the first match for the <value expression> in the array. By default, the search starts from
the beginning of the array. The optional <int value expr> specifies the start position. Positions are counted
from 1. Returns zero if no match is found. (HyperSQL)

SORT_ARRAY

SORT_ARRAY(<array value expr> [{ ASC | DESC }] [NULLS { FIRST | LAST }])

Returns a sorted copy of the array. By default, sort is performed in ascending order and NULL elements are sorted
first. (HyperSQL)

TRIM_ARRAY

TRIM_ARRAY(<array value expr>, <num value expr>)

Returns a new array that contains the elements of the <array value expr> minus the number of elements
specified by the <num value expr>. Elements are discarded from the end of the array. (SQL:2016)

SEQUENCE_ARRAY

SEQUENCE_ARRAY(<value expr 1>, <value expr 2>, <value expr 3)

Returns a new array that contains a sequence of values. The <value expr 1> is the lower bound of the range.
The <value expr 2> is the upper bound of the range. The <value expr 3> is the increment. The elements
of the array are within the inclusive range. The first element is <value expr 1> and each subsequent element is
the sum of the previous element and the increment. If the increment is zero, only the first element is returned. When
the increment is negative, the lower bound should be larger than the upper bound. The type of the arguments can be
all number types, or a datetime range and an interval for the third argument (HyperSQL)

In the examples below, a number sequence and a date sequence are shown. The UNNEST table expression is used
to form a table from the array.

 SEQUENCE_ARRAY(0, 100, 5)

 ARRAY[0,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100]

 SELECT * FROM UNNEST(SEQUENCE_ARRAY(10, 12, 1))

 C1
 --
 10
 11
 12

Built In Functions

109

 SELECT * FROM UNNEST(SEQUENCE_ARRAY(CURRENT_DATE, CURRENT_DATE + 6 DAY, 1 DAY)) WITH ORDINALITY
 AS T(D, I)

 D I
 ---------- -
 2010-08-01 1
 2010-08-02 2
 2010-08-03 3
 2010-08-04 4
 2010-08-05 5
 2010-08-06 6
 2010-08-07 7

General Functions
General functions can take different types of arguments. Some General Functions accept a variable number of
arguments.

Also see the Data Access and Change chapter for SQL expressions that are similar to functions, for example CAST
and NULLIF.

CASEWHEN

CASEWHEN(<boolean value expr>, <value expr 2>, <value expr 3>)

If the <boolean value expr> is true, returns <value expr 2> otherwise returns <value expr 3>.
Use a CASE WHEN expression instead for more extensive capabilities and options.
CASE WHEN is documented in the Data Access and Change chapter. (HyperSQL)

COALESCE

COALESCE(<value expr 1>, <value expr 2> [, ...])

Returns <value expr 1> if it is not null, otherwise returns <value expr 2> if not null and so on. The type
of both arguments must be comparable. (SQL:2016)

CONVERT

CONVERT (<value expr> , <data type>)

<data type> ::= { SQL_BIGINT | SQL_BINARY | SQL_BIT |SQL_BLOB | SQL_BOOLEAN
| SQL_CHAR | SQL_CLOB | SQL_DATE | SQL_DECIMAL | SQL_DATALINK |SQL_DOUBLE |
SQL_FLOAT | SQL_INTEGER | SQL_LONGVARBINARY | SQL_LONGNVARCHAR | SQL_LONGVARCHAR
| SQL_NCHAR | SQL_NCLOB | SQL_NUMERIC | SQL_NVARCHAR | SQL_REAL | SQL_ROWID
| SQL_SQLXML | SQL_SMALLINT | SQL_TIME | SQL_TIMESTAMP | SQL_TINYINT |
SQL_VARBINARY | SQL_VARCHAR} [(<precision, length or scale parameters>)]

The CONVERT function is a JDBC escape function, equivalent to the SQL standard CAST expression. It converts
the <value expr> into the given <data type> and returns the value. The <data type> options are synthetic
names made by prefixing type names with SQL_. Some of the <data type> options represent valid SQL types,
but some are based on non-standard type names, namely { SQL_LONGNVARCHAR | SQL_LONGVARBINARY |
SQL_LONGVARCHAR | SQL_TINYINT }. None of the synthetic names can be used in any other context than
the CONVERT function.

The definition of CONVERT in the JDBC Standard does not allow the precision, scale or length to be specified. This
is required by the SQL standard for BINARY, BIT, BLOB, CHAR, CLOB, VARBINARY and VARCHAR types and
is often needed for DECIMAL and NUMERIC. Defaults are used for precision.

Built In Functions

110

HyperSQL also allows the use of real type names (without the SQL_ prefix). In this usage, HyperSQL allows the use
of precision, scale or length for the type definition when they are valid for the type definition.

When MS SQL Server compatibility mode is on, the parameters of CONVERT are switched and only the real type
names with required precision, scale or length are allowed. (JDBC)

DECODE

DECODE(<value expr main>, <value expr match 1>, <value expr result 1> [...,]
[, <value expr default>])

DECODE takes at least 3 arguments. The <value expr main> is compared with <value expr match 1>
and if it matches, <value expr result 1> is returned. If there are additional pairs of <value expr match
n> and <value expr result n>, comparison is repeated until a match is found the result is returned. If no
match is found, the <value expr default> is returned if it is specified, otherwise NULL is returned. The type
of the return value is a combination of the types of the <value expr result ... > arguments. (HyperSQL)

GREATEST

GREATEST(<value expr 1>, [<value expr ...>, ...])

The GREATEST function takes one or more arguments. It compares the arguments with each other and returns the
greatest argument. The return type is the combined type of the arguments. Arguments can be of any type, so long as
they are comparable. (HyperSQL)

IFNULL

ISNULL

IFNULL | ISNULL (<value expr 1>, <value expr 2>)

Returns <value expr 1> if it is not null, otherwise returns <value expr 2>. The type of the return value is
the type of <value expr 1>. Almost equivalent to SQL Standard COALESCE(<value expr 1>, <value
expr 2>) function, but without type modification. (JDBC)

LEAST

LEAST(<value expr 1>, [<value expr ...>, ...])

The LEAST function takes one or more arguments. It compares the arguments with each other and returns the smallest
argument. The return type is the combined type of the arguments. Arguments can be of any type, so long as they are
comparable. (HyperSQL)

LOAD_FILE

LOAD_FILE (<char value expr 1> [, <char value expr 2>])

Returns a BLOB or CLOB containing the URL or file path specified in the first argument. If used with a single
argument, the function returns a BLOB. If used with two arguments, the function returns a CLOB and the second
argument is the character encoding of the file.

The file path is interpreted the same way as a TEXT TABLE source file location. The hsqldb.allow_full_path
system property must be set true in order to access files outside the directory structure of the database files.

(HyperSQL)

NULLIF

Built In Functions

111

NULLIF(<value expr 1>, <value expr 2>)

Returns <value expr 1> if it is not equal to <value expr 2>, otherwise returns null. The type of both
arguments must be the same. This function is a shorthand for a specific CASE expression. (SQL:2016)

NVL

NVL(<value expr 1>, <value expr 2>)

Returns <value expr 1> if it is not null, otherwise returns <value expr 2>. The type of the return value is
the type of <value expr 1>. For example, if <value expr 1> is an INTEGER column and <value expr
2> is a DOUBLE constant, the return type is cast into INTEGER. This function is similar to IFNULL. (HyperSQL)

NVL2

NVL2(<value expr 1>, <value expr 2>, <value expr 3>)

If <value expr 1> is not null, returns <value expr 2>, otherwise returns <value expr 3>. The type of
the return value is the type of <value expr 2> unless it is null. (HyperSQL)

UUID

UUID ([{ <char value expr> | <binary value expr>] })

With no parameter, this function returns a new UUID value as a 16-byte binary value in the UUID type. With a
UUID hexadecimal string argument, it returns the 16-byte binary value in UUID. With a 16-byte binary or UUID
argument, it returns the formatted UUID character representation. Note UUID is a type derived from BINARY(16)
that in represented as a hexadecimal character string with the required hyphens. (HyperSQL)

NEWID

NEWID ()

This is a synonym for the no-arg UUID function in MSS compatibility mode. (HyperSQL)

SYS_GUID

SYS_GUID ()

Returns a UUID value as a 16 byte binary value in ORA compatibility mode. (HyperSQL)

System Functions
CRYPT_KEY

CRYPT_KEY(<value expr 1>, <value expr 2>)

Returns a binary string representation of a cryptography key for the given cipher and cryptography provider. The
cipher specification is specified by <value expr 1> and the provider by <value expr 2>. To use the default
provider, specify null for <value expr 2>. (HyperSQL)

DIAGNOSTICS

DIAGNOSTICS (ROW_COUNT)

This is a convenience function for use instead of the GET DIAGNOSTICS ... statement. The argument specifies
the name of the diagnostics variable. Currently the only supported variable is the ROW_COUNT variable. The function

Built In Functions

112

returns the row count returned by the last executed statement. The return value is 0 after most statements. Calling this
function immediately after executing an INSERT, UPDATE, DELETE or MERGE statement returns the row count
for the last statement, as it is returned by the JDBC statement. (HyperSQL)

IDENTITY

IDENTITY ()

Returns the last IDENTITY value inserted into a row by the current session. The statement, CALL IDENTITY() can be
made after an INSERT statement that inserts a row into a table with an IDENTITY column. The CALL IDENTITY()
statement returns the last IDENTITY value that was inserted into a table by the current session. Each session manages
this function call separately and is not affected by inserts in other sessions. The statement can be executed as a direct
statement or a prepared statement. (HyperSQL)

DATABASE

DATABASE ()

Returns the file name (without directory information) of the database. (JDBC)

DATABASE_NAME

DATABASE_NAME ()

Returns the database name. This name is a 16-character, uppercase string. It is generated as a string based on the
timestamp of the creation of the database, for example HSQLDB32438AEAFB. The name can be redefined by an
admin user but the new name must be all uppercase and 16 characters long. This name is used in log messages with
external logging frameworks. (HyperSQL)

DATABASE_VERSION

DATABASE_VERSION ()

Returns the full version string for the database engine. For example, 2.7.1. (JDBC)

USER

USER ()

Equivalent to the SQL function CURRENT_USER. (JDBC)

CURRENT_USER

CURRENT_USER

CURRENT_ROLE

CURRENT_ROLE

SESSION_USER

SESSION_USER

SYSTEM_USER

SYSTEM_USER

CURRENT_SCHEMA

Built In Functions

113

CURRENT_SCHEMA

CURRENT_CATALOG

CURRENT_CATALOG

These functions return the named current session attribute. They are all SQL Standard functions.

The CURRENT_USER is the user that connected to the database, or a user subsequently set by the SET
AUTHORIZATION statement.

SESSION_USER is the same as CURRENT_USER

SYSTEM_USER is the user that connected to the database. It is not changed with any command until the session is
closed.

CURRENT_SCHEMA is default schema of the user, or a schema subsequently set by the SET SCHEMA command.

CURRENT_CATALOG is always the same within a given HyperSQL database and indicates the name of the catalog.

IS_AUTOCOMMIT

IS_AUTOCOMMIT()

Returns TRUE if the session is in auto-commit mode. (HyperSQL)

IS_READONLY_SESSION

IS_READONLY_SESSION()

Returns TRUE if the session is in read only mode. (HyperSQL)

IS_READONLY_DATABASE

IS_READONLY_DATABASE()

Returns TRUE if the database is a read only database. (HyperSQL)

IS_READONLY_DATABASE_FILES

IS_READONLY_DATABASE_FILES()

Returns TRUE if the database is a read-only files database. In this kind of database, it is possible to modify the data,
but the changes are not persisted to the database files. (HyperSQL)

ISOLATION_LEVEL

ISOLATION_LEVEL()

Returns the current transaction isolation level for the session. Returns either READ COMMITTED or
SERIALIZABLE as a string. (HyperSQL)

SESSION_ID

SESSION_ID()

Returns the id of the session as a BIGINT value. Each session id is unique during the operational lifetime of the
database. Id's are restarted after a shutdown and restart. (HyperSQL)

Built In Functions

114

SESSION_ISOLATION_LEVEL

SESSION_ISOLATION_LEVEL()

Returns the default transaction isolation level for the current session. Returns either READ COMMITTED or
SERIALIZABLE as a string. (HyperSQL)

DATABASE_ISOLATION_LEVEL

DATABASE_ISOLATION_LEVEL()

Returns the default transaction isolation level for the database. Returns either READ COMMITTED or
SERIALIZABLE as a string. (HyperSQL)

TRANSACTION_SIZE

TRANSACTION_SIZE()

Returns the row change count for the current transaction. Each row change represents a row INSERT or a row DELETE
operation. There will be a pair of row change operations for each row that is updated.

TRANSACTION_ID

TRANSACTION_ID()

Returns the current transaction ID for the session as a BIGINT value. The database maintains a global incremental
id which is allocated to new transactions and new actions (statement executions) in different sessions. This value is
unique to the current transaction. (HyperSQL)

TRANSACTION_UTC

TRANSACTION_UTC()

Returns the transaction timestamp in UTC time zone for the session. This timestamp is used in updates made to system-
versioned tables during the transaction. (HyperSQL)

ACTION_ID

ACTION_ID()

Returns the current action ID for the session as a BIGINT value. The database maintains a global incremental id which
is allocated to new transactions and new actions (statement executions) in different sessions. This value is unique to
the current action. (HyperSQL)

TRANSACTION_CONTROL

TRANSACTION_CONTROL()

Returns the current transaction model for the database. Returns LOCKS, MVLOCKS or MVCC as a string.
(HyperSQL)

LOB_ID

LOB_ID(<column reference>)

Returns internal ID of a lob as a BIGINT value. Lob ID's are unique and never reused. The <column reference> is the
name of the column (or variable, or argument) which is a CLOB or BLOB. Returns null if the value is null. (HyperSQL)

Built In Functions

115

ROWNUM

ROWNUM()

ROW_NUMBER

ROW_NUMBER() OVER()

Returns the current row number (from 1) being processed in a select statement. This has the same semantics as the
ROWNUM pseudo-column in ORA syntax mode, but can be used in any syntax mode. The function is used in a
SELECT or DELETE statement. The ROWNUM of a row is incremented as the rows are added to the result set. It is
therefore possible to use a condition such as WHERE ROWNUM() < 10, but not ROWNUM() > 10 or ROWNUM
= 10. The ROW_NUMBER() OVER() alternative performs the same function and is included for compatibility with
other database engines.(HyperSQL)

116

Chapter 5. Data Access and Change

Fred Toussi, The HSQL Development Group
$Revision: 6535 $

Copyright 2010-2022 Fred Toussi. Permission is granted to distribute this document without any alteration
under the terms of the HSQLDB license. Additional permission is granted to the HSQL Development Group
to distribute this document with or without alterations under the terms of the HSQLDB license.
2022-10-20

Overview
HyperSQL data access and data change statements are compatible with the latest SQL:2016 Standard. There are a few
extensions and some relaxation of rules, but these do not affect statements that are written to the Standard syntax. There
is full support for classic SQL, as specified by SQL-92, and many enhancements added in later versions of the standard.

Cursors And Result Sets
An SQL statement can be executed in two ways. One way is to use the java.sql.Statement
interface. The Statement object can be reused to execute completely different SQL statements. Alternatively, a
PreparedStatment can be used to execute an SQL statement repeatedly, and the statements can use parameters.
Using either form, if the SQL statement is a query expression, a ResultSet is returned.

In SQL, when a query expression (SELECT or similar SQL statement) is executed, an ephemeral table is created.
When this table is returned to the application program, it is returned as a result set, which is accessed row by row by
a cursor. A JDBC ResultSet represents an SQL result set and its cursor.

The minimal definition of a cursor is a list of rows with a position that can move forward. Some cursors also allow
the position to move backwards or jump to any position in the list.

An SQL cursor has several attributes. These attributes depend on the query expression. Some of these attributes can
be overridden by specifying qualifiers in the SQL statement or by specifying values for the parameters of the JDBC
Statement or PreparedStatement.

Columns and Rows
The columns of the result set are determined by the query expression. The number of columns and the type and
name characteristics of each column are known when the query expression is compiled and before its execution. This
metadata information remains constant regardless of changes to the contents of the tables used in the query expression.
The metadata for the JDBC ResultSet is in the form of a ResultSetMetaData object. Various methods of the
ResultSetMetaData interface return different properties of each column of the ResultSet.

A result set may contain 0 or more rows. The rows are determined by the execution of the query expression.

The setMaxRows(int) method of JDBC Statement allows limiting the number of rows returned by the
statement. This limit is conceptually applied after the result has been built, and the excess rows are discarded.

Navigation
A cursor is either scrollable or not. Scrollable cursors allow accessing rows by absolute or relative positioning. No-
scroll cursors only allow moving to the next row. The cursor can be optionally declared with the SQL qualifiers

Data Access and Change

117

SCROLL, or NO SCROLL. The JDBC statement parameter can be specified as: TYPE_FORWARD_ONLY and
TYPE_SCROLL_INSENSITIVE. The JDBC type TYPE_SCROLL_SENSITIVE is not supported by HSQLDB.

The default is NO SCROLL or TYPE_FORWARD_ONLY.

When a JDBC ResultSet is opened, it is positioned before the first row. Using the next() method, the position
is moved to the first row. While the ResultSet is positioned on a row, various getter methods can be used to access
the columns of the row.

Updatability

The result returned by some query expressions is updatable. HSQLDB supports core SQL updatability features, plus
some enhancements from the SQL optional features.

A query expression is updatable if it is a SELECT from a single underlying base table (or updatable view) either
directly or indirectly. A SELECT statement featuring DISTINCT or GROUP BY or FETCH, LIMIT, OFFSET is not
updatable. In an updatable query expression, one or more columns are updatable. An updatable column is a column that
can be traced directly to the underlying table. Therefore, columns that contain expressions are not updatable. Examples
of updatable query expressions are given below. The view V is updatable when its query expression is updatable. The
SELECT statement from this view is also updatable:

 SELECT A, B FROM T WHERE C > 5
 SELECT A, B FROM (SELECT * FROM T WHERE C > 10) AS TT WHERE TT.B <10
 CREATE VIEW V(X,Y) AS SELECT A, B FROM T WHERE C > 0 AND B < 10
 SELECT X FROM V WHERE Y = 5

If a cursor is declared with the SQL qualifier, FOR UPDATE OF <column name list>, then only the stated
columns in the result set become updatable. If any of the stated columns is not actually updatable, then the cursor
declaration will not succeed.

If the SQL qualifier, FOR UPDATE is used, then all the updatable columns of the result set become updatable.

If a cursor is declared with FOR READ ONLY, then it is not updatable.

In HyperSQL, if FOR READ ONLY or FOR UPDATE is not used then all the updatable columns of the result set
become updatable. This relaxes the SQL standard rule that in this case limits updatability to only simply updatable
SELECT statements (where all columns are updatable).

In JDBC, CONCUR_READ_ONLY or CONCUR_UPDATABLE can be specified for the Statement parameter.
CONCUR_UPDATABLE is required if the returning ResultSet is to be updatable. If CONCUR_READ_ONLY, which
is the default, is used, then even an updatable ResultSet becomes read-only.

When a ResultSet is updatable, various setter methods can be used to modify the column values. The names of
the setter methods begin with "update". After all the updates on a row are done, the updateRow() method must be
called only once to finalise the row update.

An updatable ResultSet may or may not be insertable-into. In an insertable ResultSet, all columns of the result
are updatable and any column of the base table that is not in the result must be a generated column or have a default
value.

In the ResultSet object, a special pseudo-row, called the insert row, is used to populate values for insertion into the
ResultSet (and consequently, into the base table). The setter methods must be used on all the columns, followed
by a call to insertRow().

Individual rows from all updatable result sets can be deleted one at a time. The deleteRow() is called when the
ResultSet is positioned on a row.

Data Access and Change

118

While using an updatable ResultSet to modify data, it is recommended not to change the same data using another
ResultSet and not to execute SQL data change statements that modify the same data.

Sensitivity
The sensitivity of the cursor relates to visibility of changes made to the data by the same transaction but without using
the given cursor. While the result set is open, the same transaction may use statements such as INSERT or UPDATE,
and change the data of the tables from which the result set data is derived. A cursor is SENSITIVE if it reflects those
changes. It is INSENSITIVE if it ignores such changes. It is ASENSITIVE if behaviour is implementation dependent.

The SQL default is ASENSITIVE, i.e., implantation dependent.

In HyperSQL all cursors are INSENSITIVE. They do not reflect changes to the data made by other statements.

Holdability
A cursor is holdable if the result set is not automatically closed when the current transaction is committed. Holdability
can be specified in the cursor declaration using the SQL qualifiers WITH HOLD or WITHOUT HOLD.

In JDBC, holdability is specified using either of the following values for the Statement parameter:
HOLD_CURSORS_OVER_COMMIT, or CLOSE_CURSORS_AT_COMMIT.

The SQL default is WITHOUT HOLD.

The JDBC default for HyperSQL result sets is WITH HOLD for read-only result sets and WITHOUT HOLD for
updatable result sets.

If the holdability of a ResultSet is specified in a conflicting manner in the SQL statement and the JDBC
Statement object, the JDBC setting takes precedence.

Autocommit
The autocommit property of a connection is a feature of JDBC and ODBC and is not part of the SQL Standard.
In autocommit mode, all transactional statements are followed by an implicit commit. In autocommit mode, all
ResultSet objects are read-only and holdable.

JDBC Overview
The JDBC settings, ResultSet.CONCUR_READONLY and ResultSet.CONCUR_UPDATABLE are the available
alternatives for read-only or updatability. The default is ResultSet.CONCUR_READONLY.

The JDBC settings, ResultSet.TYPE_FORWARD_ONLY, ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.TYPE_SCROLL_SENSITIVE are the available alternatives for both scrollability (navigation) and
sensitivity. HyperSQL does not support ResultSet.TYPE_SCROLL_SENSITIVE. The two other alternatives can be
used for both updatable and read-only result sets.

The JDBC settings ResultSet.CLOSE_CURSORS_AT_COMMIT and
ResultSet.HOLD_CURSORS_OVER_COMMIT are the alternatives for the lifetime of the result set. The default is
ResultSet.CLOSE_CURSORS_AT_COMMIT. The other setting can only be used for read-only result sets.

Examples of creating statements for updatable result sets are given below:

 Connection c = newConnection();
 Statement st;
 c.setAutoCommit(false);
 st = c.createStatement(ResultSet.TYPE_FORWARD_ONLY, ResultSet.CONCUR_UPDATABLE);

Data Access and Change

119

 st = c.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE, ResultSet.CONCUR_UPDATABLE);

JDBC Parameters

When a JDBC PreparedStatement or CallableStatement is used with an SQL statement that contains dynamic
parameters, the data types of the parameters are resolved and determined by the engine when the statement is prepared.
The SQL Standard has detailed rules to determine the data types and imposes limits on the maximum length or precision
of the parameter. HyperSQL applies the standard rules with two exceptions for parameters with String and BigDecimal
Java types. HyperSQL ignores the limits when the parameter value is set, and only enforces the necessary limits
when the PreparedStatement is executed. In all other cases, parameter type limits are checked and enforced when the
parameter is set.

In the example below the setString() calls do not raise an exception, but one of the execute() statements does.

 // table definition: CREATE TABLE T (NAME VARCHAR(12), ...)
 Connection c = newConnection();
 PreparedStatement st = c.prepareStatement("SELECT * FROM T WHERE NAME = ?");
 // type of the parameter is VARCHAR(12), which limits length to 12 characters
 st.setString(1, "Eyjafjallajokull"); // string is longer than type, but no exception is raised
 here
 set.execute(); // executes with no exception and does not find any rows

 // but if an UPDATE is attempted, an exception is raised
 st = c.prepareStatement("UPDATE T SET NAME = ? WHERE ID = 10");
 st.setString(1, "Eyjafjallajokull"); // string is longer than type, but no exception is raised
 here
 st.execute(); // exception is thrown when HyperSQL checks the value for update

JDBC parameters can be set with any compatible type, as supported by the JDBC specification. For CLOB
and BLOB types, you can use streams, or create instances of BLOB or CLOB before assigning them to the
parameters. You can even use CLOB or BLOB objects returned from connections to other RDBMS servers. The
Connection.createBlob() and createClob() methods can be used to create the new LOBs. For very large
LOBs the stream methods are preferable as they use less memory.

For array parameters, you can use a java.sql.Array object that contains the array elements before assigning to
JDBC parameters. The Connection.createArrayOf(...) method can be used to create a new object, or you
can use an Array returned from connections to other RDBMS servers. You can also use Java arrays of primitives to
assign to the SQL array parameters.

The above also applies to the methods of java.sql.ResultSet that are used for setting values in new and updated
rows in updatable ResultSet objects.

The setObject() methods of PreparedStatement and CallableStatement also accept objects of the new
types introduced in Java 8 and listed below under JDBC Returned Values. The new Java 8 method, getObject(int
columnIndex, Class<T> type), can be used to retrieve the value of an OUT parameter from a
CallableStatement.

JDBC and Data Change Statements

Data change statements, also called data manipulation statements (DML) such as INSERT, UPDATE, MERGE can be
called with different executeUpdate() methods of java.sql.Statement and java.sql.PreparedStatement.
Some of these methods allow you to specify how values for generated columns of the table are
returned. These methods are documented in the JavaDoc for org.hsqldb.jdbc.JDBCStatement and
org.hsqldb.jdbc.JDBCPreparedStatement. HyperSQL can return not just the generated columns, but any
set of columns of the table. You can use this to retrieve the columns values that may be modified by a BEFORE
TRIGGER on the table.

Data Access and Change

120

JDBC Callable Statement
The JDBC CallableStatement interface is used to call Java or SQL procedures that have been defined in the database.
The SQL statement is in the form of CALL procedureName (...) with constant value arguments or with parameter
markers. Note that you must use a parameter marker for OUT and INOUT arguments of the procedure you are calling.
The OUT arguments should not be set before executing the callable statement.

After executing the statement, you can retrieve the OUT and INOUT parameters with the appropriate getXXX()
method.

Procedures can also return one or more result sets. You should call the getResultSet() and
getMoreResults() methods to retrieve the result sets one by one.

SQL functions can also return a table. You can call such functions the same way as procedures and retrieve the table
as a ResultSet.

JDBC Returned Values
The methods of the JDBC ResultSet interface are used to return values and to convert value to different types as
supported by the JDBC specification. Methods of JDBC CallableStatement that have the same signature are used to
return values from procedure calls.

When a CLOB and BLOB object is returned from a ResultSet, no data is transferred until the data is read by various
methods of java.sql.CLOB and java.sql.BLOB. Data is streamed in large blocks to avoid excessive memory
use.

Array objects are returned as instances of java.sql.Array.

When the standard version of HyperSQL jar is used, the methods added in Java 8 are available and the behaviour of
the getObject(int columnIndex) method for retrieving TIMESTAMP WITH TIME ZONE values changes.
With Java 7 and older, this method returns a java.sql.Timestamp object. With Java 8 or later, it returns a
java.time.OffsetDateTime object which contains the time zone offset value as well as the other fields of the
TIMESTAMP.

A new method, getObject(int columnIndex, Class<T> type) is available in Java 8 and later. With
this method, you specify the required return type. The common types such as String, Integer, byte[] are supported,
as well as new types that can be used for DATE, TIME, TIMESTAMP, and INTERVAL values. The table below
shows which Java classes are the most appropriate for the specified SQL TYPES. In addition, you can use these Java
types for values of SQL type that are not fully matched. For example, java.time.LocalDateTime can be used
to retrieve a DATE value.

java.util.UUID = UUID

java.time.LocalDate = DATE

java.sql.Date = DATE

java.time.LocalTime = TIME

java.sql.Time = TIME

java.time.LocalDateTime = TIMESTAMP

java.sql.Timestamp = TIMESTAMP

java.time.OffsetTime = TIME WITH TIME ZONE

java.time.OffsetDateTime = TIMESTAMP WITH TIME ZONE

java.time.Duration = INTERVAL MONTH, INTERVAL YEAR, INTERVAL YEAR TO MONTH

Data Access and Change

121

java.time.Period = INTERVAL SECOND, INTERVAL MINUTE, INTERVAL HOUR, INTERVAL DAY,
and their range combinations

java.sql.Array = all ARRAY

Cursor Declaration

The DECLARE CURSOR statement is used within an SQL PROCEDURE body. In the current version of HyperSQL,
the cursor is used only to return a result set from the procedure. Therefore, the cursor must be declared WITH RETURN
and can only be READ ONLY.

DECLARE CURSOR

declare cursor statement

<declare cursor> ::= DECLARE <cursor name>

[{ SENSITIVE | INSENSITIVE | ASENSITIVE }] [{ SCROLL | NO SCROLL }]

CURSOR [{ WITH HOLD | WITHOUT HOLD }] [{ WITH RETURN | WITHOUT RETURN }]

FOR <query expression>

[FOR { READ ONLY | UPDATE [OF <column name list>] }]

The query expression is a SELECT statement or similar, and is discussed in the rest of this chapter. In the example
below a cursor is declared for a SELECT statement. It is later opened to create the result set. The cursor is specified
WITHOUT HOLD, so the result set is not kept after a commit. Use WITH HOLD to keep the result set. Note that you
need to declare the cursor WITH RETURN as it is returned by the CallableStatement.

 DECLARE thiscursor SCROLL CURSOR WITHOUT HOLD WITH RETURN FOR SELECT * FROM
 INFORMATION_SCHEMA.TABLES;
 --
 OPEN thiscursor;

Syntax Elements
The syntax elements that can be used in data access and data change statements are described in this section. The SQL
Standard has a very extensive set of definitions for these elements. The BNF definitions given here are sometimes
simplified.

Literals

Literals are used to express constant values. The general type of a literal is known by its format. The specific type
is based on conventions.

unicode escape elements

unicode escape elements

<Unicode escape specifier> ::= [UESCAPE <quote><Unicode escape
character><quote>]

<Unicode escape value> ::= <Unicode 4 digit escape value> | <Unicode 6 digit
escape value> | <Unicode character escape value>

Data Access and Change

122

<Unicode 4 digit escape value> ::= <Unicode escape
character><hexit><hexit><hexit><hexit>

<Unicode 6 digit escape value> ::= <Unicode escape character><plus sign>
<hexit><hexit><hexit><hexit><hexit><hexit>

<Unicode character escape value> ::= <Unicode escape character><Unicode escape
character>

<Unicode escape character> ::= a single character other than a <hexit> (a-f, A-
F, 0-9), <plus sign>, <quote>, <double quote>, or <white space>

character literal

character literal

<character string literal> ::= [<introducer><character set specification>]
<quote> [<character representation>...] <quote> [{ <separator> <quote>
[<character representation>...] <quote> }...]

<introducer> ::= <underscore>

<character representation> ::= <nonquote character> | <quote symbol>

<nonquote character> ::= any character apart from the quote symbol.

<quote symbol> ::= <quote><quote>

<national character string literal> ::= N <quote> [<character
representation>...] <quote> [{ <separator> <quote> [<character
representation>...] <quote> }...]

<Unicode character string literal> ::= [<introducer><character set
specification>] U<ampersand><quote> [<Unicode representation>...] <quote>
[{ <separator> <quote> [<Unicode representation>...] <quote> }...] <Unicode
escape specifier>

<Unicode representation> ::= <character representation> | <Unicode escape value>

The type of a character literal is CHARACTER. The length of the string literal is the character length of the type. If
the quote character is used in a string, it is represented with two quote characters. Long literals can be divided into
multiple quoted strings, separated with a space or end-of-line character.

Unicode literals start with U& and can contain ordinary characters and Unicode escapes. A Unicode escape begins
with the backslash (\) character and is followed by four hexadecimal characters which specify the character code. The
Unicode escape character can be custom defined for a literal string by adding UESPACE as in one of the examples
below.

Example of character literals are given below:

 'a literal' ' string seperated' ' into parts'
 'a string''s literal form with quote character'
 U&'Unicode string with Greek delta \0394 and phi \03a6 letters'
 U&'Unicode string with forward slash // as custom escape character'UESCAPE'/'

binary literal

Data Access and Change

123

binary literal

<binary string literal> ::= X <quote> [<space>...] [{ <hexit> [<space>...]
<hexit> [<space>...] }...] <quote> [{ <separator> <quote> [<space>...]
[{ <hexit> [<space>...] <hexit> [<space>...] }...] <quote> }...]

<hexit> ::= <digit> | A | B | C | D | E | F | a | b | c | d | e | f

The type of a binary literal is BINARY. The octet length of the binary literal is the length of the type. Case-insensitive
hexadecimal characters are used in the binary string. Each pair of characters in the literal represents a byte in the binary
string. Long literals can be divided into multiple quoted strings, separated with a space or end-of-line character.

 X'1abACD34' 'Af'

bit literal

bit literal

<bit string literal> ::= B <quote> [<bit> ...] <quote> [{ <separator> <quote>
[<bit>...] <quote> }...]

<bit> ::= 0 | 1

The type of a binary literal is BIT. The bit length of the bit literal is the length of the type. Digits 0 and 1 are used
to represent the bits. Long literals can be divided into multiple quoted strings, separated with a space or end-of-line
character.

 B'10001001' '00010'

numeric literal

numeric literal

<signed numeric literal> ::= [<sign>] <unsigned numeric literal>

<unsigned numeric literal> ::= <exact numeric literal> | <approximate numeric
literal>

<exact numeric literal> ::= <unsigned integer> [<period> [<unsigned integer>]]
| <period> <unsigned integer>

<sign> ::= <plus sign> | <minus sign>

<approximate numeric literal> ::= <mantissa> E <exponent>

<mantissa> ::= <exact numeric literal>

<exponent> ::= <signed integer>

<signed integer> ::= [<sign>] <unsigned integer>

<unsigned integer> ::= <digit>...

The type of an exact numeric literal without a decimal point is INTEGER, BIGINT, or DECIMAL, depending on the
value of the literal (the smallest type that can represent the value is the type).

Data Access and Change

124

The type of an exact numeric literal with a decimal point is DECIMAL. The precision of a decimal literal is the total
number of digits of the literal. The scale of the literal is the total number of digits to the right of the decimal point.

The type of an approximate numeric literal is DOUBLE. An approximate numeric literal always includes the mantissa
and exponent, separated by E.

 12
 34.35
 +12E-2

boolean literal

boolean literal

<boolean literal> ::= TRUE | FALSE | UNKNOWN

The boolean literal is one of the specified keywords.

datetime and interval literal

datetime and interval literal

<datetime literal> ::= <date literal> | <time literal> | <timestamp literal>

<date literal> ::= DATE <date string>

<time literal> ::= TIME <time string>

<timestamp literal> ::= TIMESTAMP <timestamp string>

<date string> ::= <quote> <unquoted date string> <quote>

<time string> ::= <quote> <unquoted time string> <quote>

<timestamp string> ::= <quote> <unquoted timestamp string> <quote>

<time zone interval> ::= <sign> <hours value> <colon> <minutes value>

<date value> ::= <years value> <minus sign> <months value> <minus sign> <days
value>

<time value> ::= <hours value> <colon> <minutes value> <colon> <seconds value>

<interval literal> ::= INTERVAL [<sign>] <interval string> <interval qualifier>

<interval string> ::= <quote> <unquoted interval string> <quote>

<unquoted date string> ::= <date value>

<unquoted time string> ::= <time value> [<time zone interval>]

<unquoted timestamp string> ::= <unquoted date string> <space> <unquoted time
string>

<unquoted interval string> ::= [<sign>] { <year-month literal> | <day-time
literal> }

<year-month literal> ::= <years value> [<minus sign> <months value>] | <months
value>

Data Access and Change

125

<day-time literal> ::= <day-time interval> | <time interval>

<day-time interval> ::= <days value> [<space> <hours value> [<colon> <minutes
value> [<colon> <seconds value>]]]

<time interval> ::= <hours value> [<colon> <minutes value> [<colon> <seconds
value>]] | <minutes value> [<colon> <seconds value>] | <seconds value>

<years value> ::= <datetime value>

<months value> ::= <datetime value>

<days value> ::= <datetime value>

<hours value> ::= <datetime value>

<minutes value> ::= <datetime value>

<seconds value> ::= <seconds integer value> [<period> [<seconds fraction>]]

<seconds integer value> ::= <unsigned integer>

<seconds fraction> ::= <unsigned integer>

<datetime value> ::= <unsigned integer>

The type of a datetime or interval type is specified in the literal. The fractional second precision is the number of digits
in the fractional part of the literal. Details are described in the SQL Language chapter

 DATE '2008-08-08'
 TIME '20:08:08'
 TIMESTAMP '2008-08-08 20:08:08.235'

 INTERVAL '10' DAY
 INTERVAL -'08:08' MINUTE TO SECOND

References, etc.

References are identifier chains, which can be a single identifiers or identifiers chains composed of single identifiers
chained together with the period symbol.

identifier chain

identifier chain

<identifier chain> ::= <identifier> [{ <period> <identifier> }...]

<basic identifier chain> ::= <identifier chain>

A period-separated chain of identifiers. The identifiers in an identifier chain can refer to database objects in a hierarchy.
The possible hierarchies are as follows. In each hierarchy, elements from the start or the end can be missing, but the
order of elements cannot be changed.

catalog, schema, database object

catalog, schema, table, column

correlation name, column

Data Access and Change

126

Examples of identifier chain are given below:

 SELECT MYCATALOG.MYSCHEMA.MYTABLE.MYCOL FROM MYCATALOG.MYSCHEMA.MYTABLE
 DROP TABLE MYCATALOG.MYSCHEMA.MYTABLE CASCADE
 ALTER SEQUENCE MYCATALOG.MYSCHEMA.MYSEQUENCE RESTART WITH 100

column reference

column reference

<column reference> ::= <basic identifier chain> | MODULE <period> <qualified
identifier> <period> <column name>

Reference a column or a routine variable.

SQL parameter reference

SQL parameter reference

<SQL parameter reference> ::= <basic identifier chain>

Reference an SQL routine parameter.

contextually typed value specification

contextually typed value specification

<contextually typed value specification> ::= <null specification> | <default
specification>

<null specification> ::= NULL

<default specification> ::= DEFAULT

Specify a value whose data type or value is inferred from its context.

DEFAULT is used for assignments to table columns that have a default value, or to table columns that are generated
either as an IDENTITY value or as an expression.

NULL can be used only in a context where the type of the value is known. For example, a NULL can be assigned to
a column of the table in an INSERT or UPDATE statement, because the type of the column is known. But if NULL
is used in a SELECT list, it must be used in a CAST statement.

Value Expression
Value expression is a general name for all expressions that return a value. Different types of expressions are allowed
in different contexts.

value expression primary

value expression primary

<value expression primary> ::= <parenthesized value expression> |
<nonparenthesized value expression primary>

<parenthesized value expression> ::= <left paren> <value expression> <right
paren>

Data Access and Change

127

<nonparenthesized value expression primary> ::= <unsigned value specification>
| <column reference> | <set function specification> | <scalar subquery> | <case
expression> | <cast specification> | <next value expression> | <current value
expression> | <routine invocation>

Specify a value that is syntactically self-delimited.

value specification

value specification

<value specification> ::= <literal> | <general value specification>

<unsigned value specification> ::= <unsigned literal> | <general value
specification>

<target specification> ::= <host parameter specification> | <SQL parameter
reference> | <column reference> | <dynamic parameter specification>

<simple target specification> ::= <host parameter specification> | <SQL parameter
reference> | <column reference> | <embedded variable name>

<host parameter specification> ::= <host parameter name> [<indicator
parameter>]

<dynamic parameter specification> ::= <question mark>

Specify one or more values, host parameters, SQL parameters, dynamic parameters, or host variables.

row value expression

row value expression

<row value expression> ::= <row value special case> | <explicit row value
constructor>

<row value predicand> ::= <row value special case> | <row value constructor
predicand>

<row value special case> ::= <nonparenthesized value expression primary>

<explicit row value constructor> ::= <left paren> <row value constructor element>
<comma> <row value constructor element list> <right paren> |

ROW <left paren> <row value constructor element list> <right paren> | <row
subquery>

Specify a row consisting of one or more elements. A comma separated list of expressions, enclosed in brackets, with the
optional keyword ROW. In SQL, a row containing a single element can often be used where a single value is expected.

set function specification

set function specification

<set function specification> ::= <aggregate function> | <grouping operation>

<grouping operation> ::= GROUPING <left paren> <column reference> [{ <comma>
<column reference> }...] <right paren>

Data Access and Change

128

Specify an integer value formed by bits denoting the presence of the column in the current row of the result of
GROUPING SETS. HyperSQL supports <grouping operation> from version 2.5.1.

COALESCE

coalesce expression

<coalesce expression> := COALESCE <left paren> <value expression> { <comma>
<value expression> }... <right paren>

Replace null values with another value. The coalesce expression has two or more instances of <value expression>. If
the first <value expression> evaluates to a non-null value, it is returned as the result of the coalesce expression. If it is
null, the next <value expression> is evaluated and if it evaluates to a non-non value, it is returned, and so on.

The type of the return value of a COALESCE expression is the aggregate type of the types of all the <value
expression> instances. Therefore, any value returned is implicitly cast to this type. HyperSQL also features built-
in functions with similar functionality.

NULLIF

nullif expression

<nullif expression> := NULLIF <left paren> <value expression> <comma> <value
expression> <right paren>

Return NULL if two values are equal. If the result of the first <value expression> is not equal to the result
of the second, then it is returned, otherwise NULL is returned. The type of the return value is the type of the first
<value expression>.

 SELECT i, NULLIF(n, 'not defined') FROM t

CASE

case specification

<case specification> ::= <simple case> | <searched case>

<simple case> ::= CASE <case operand> <simple when clause>... [<else clause>]
END

<searched case> ::= CASE <searched when clause>... [<else clause>] END

<simple when clause> ::= WHEN <when operand list> THEN <result>

<searched when clause> ::= WHEN <search condition> THEN <result>

<else clause> ::= ELSE <result>

<case operand> ::= <row value predicand> | <overlaps predicate part 1>

<when operand list> ::= <when operand> [{ <comma> <when operand> }...]

<when operand> ::= <row value predicand> | <comparison predicate part 2> |
<between predicate part 2> | <in predicate part 2> | <character like predicate
part 2> | <octet like predicate part 2> | <similar predicate part 2> | <regex like
predicate part 2> | <null predicate part 2> | <quantified comparison predicate

Data Access and Change

129

part 2> | <match predicate part 2> | <overlaps predicate part 2> | <distinct
predicate part 2>

<result> ::= <result expression> | NULL

<result expression> ::= <value expression>

Specify a conditional value. The result of a case expression is always a value. All the values introduced with THEN
must be of the same type or convertible to the same type. The WHEN clause of CASE can be used in two different
forms. The first form starts with a variable and the WHEN clauses follow, either as possible values for the variable,
or as conditions. The second form does not start with a variable and each WHEN is followed by a self-contained
conditional expression which can use any variables.

Some simple examples of the CASE expression are given below. The first two examples return 'Britain', 'Germany',
or 'Other country' depending on the value of dial code. The third example uses IN and smaller-than predicates.

 CASE dialcode WHEN 44 THEN 'Britain' WHEN 49 THEN 'Germany' ELSE 'Other country' END
 CASE WHEN dialcode=44 THEN 'Britain' WHEN dialcode=49 THEN 'Germany' WHEN dialcode < 0 THEN 'bad
 dial code' ELSE 'Other country' END
 CASE dialcode WHEN IN (44,49,30) THEN 'Europe' WHEN IN (86,91,92) THEN 'Asia' WHEN < 0 THEN 'bad
 dial code' ELSE 'Other continent' END

The case statement can be far more complex and involve several conditions.

CAST

cast specification

<cast specification> ::= CAST <left paren> <cast operand> AS <cast target>
<right paren>

<cast operand> ::= <value expression> | <implicitly typed value specification>

<cast target> ::= <domain name> | <data type>

Specify a data conversion. Data conversion takes place automatically among variants of a general type. For example,
numeric values are freely converted from one type to another in expressions.

Explicit type conversion is necessary in two cases. One case is to determine the type of a NULL value. The other
case is to force conversion for special purposes. Values of data types can be cast to a character type. The exception
is BINARY and OTHER types. The result of the cast is the literal expression of the value. Conversely, a value of
a character type can be converted to another type if the character value is a literal representation of the value in the
target type. Special conversions are possible between numeric and interval types, which are described in the section
covering interval types.

The examples below show examples of cast with their result:

 CAST (NULL AS TIMESTAMP)
 CAST (' 199 ' AS INTEGER) = 199
 CAST ('tRue ' AS BOOLEAN) = TRUE
 CAST (INTERVAL '2' DAY AS INTEGER) = 2
 CAST ('1992-04-21' AS DATE) = DATE '1992-04-21'

NEXT VALUE FOR

next value expression

<next value expression> ::= NEXT VALUE FOR <sequence generator name>

Data Access and Change

130

Return the next value of a sequence generator. This expression can be used as a select list element in queries, or in
assignments to table columns in data change statements. If the expression is used more than once in a single row that
is being evaluated, the same value is returned for each invocation. After evaluation of the particular row is complete,
the sequence generator will return a different value from the old value. The new value is generated by the sequence
generator by adding the increment to the last value it generated. In SQL syntax compatibility modes, variants of this
expression in different SQL dialects are supported. In the example below the expression is used in an insert statement:

INSERT INTO MYTABLE(COL1, COL2) VALUES 2, NEXT VALUE FOR MYSEQUENCE

CURRENT VALUE FOR

current value expression

<current value expression> ::= CURRENT VALUE FOR <sequence generator name>

Return the latest value that was returned by the NEXT VALUE FOR expression for a sequence generator in this session.
In the example below, the value that was generated by the sequence for the first insert, is reused for the second insert:

 INSERT INTO MYTABLE(COL1, COL2) VALUES 2, NEXT VALUE FOR MYSEQUENCE;
 INSERT INTO CHILDTABLE(COL1, COL2) VALUES 10, CURRENT VALUE FOR MYSEQUENCE;

value expression

value expression

<value expression> ::= <numeric value expression> | <string value expression>
| <datetime value expression> | <interval value expression> | <boolean value
expression> | <row value expression>

An expression that returns a value. The value can be a single value, or a row consisting more than one value.

numeric value expression

numeric value expression

<numeric value expression> ::= <term> | <numeric value expression> <plus sign>
<term> | <numeric value expression> <minus sign> <term>

<term> ::= <factor> | <term> <asterisk> <factor> | <term> <solidus> <factor>

<factor> ::= [<sign>] <numeric primary>

<numeric primary> ::= <value expression primary> | <numeric value function>

Specify a numeric value. The BNF indicates that <asterisk> and <solidus> (the operators for multiplication
and division) have precedence over <minus sign> and <plus sign>.

numeric value function

numeric value function

<numeric value function> ::= <position expression> | <extract expression> |
<length expression> ...

Specify a function yielding a value of type numeric. The supported numeric value functions are listed and described
in the Built In Functions chapter.

Data Access and Change

131

string value expression

string value expression

<string value expression> ::= <string concatenation> | <string factor>

<string factor> ::= <value expression primary> | <string value function>

<string concatenation> ::= <string value expression> <concatenation operator>
<string factor>

<concatenation operator> ::= ||

Specify a character string value, a binary string value, or a bit string value. The BNF indicates that a string value
expression can be formed by concatenation of two or more <value expression primary>. The types of the
<value expression primary> elements must be compatible, that is, all must be string, or binary or bit string
values.

character value function

string value function

<string value function> ::= ...

Specify a function that returns a character string or binary string. The supported character value functions are listed
and described in the Built In Functions chapter.

datetime value expression

datetime value expression

<datetime value expression> ::= <datetime term> | <interval value expression>
<plus sign> <datetime term> | <datetime value expression> <plus sign> <interval
term> | <datetime value expression> <minus sign> <interval term>

<datetime term> ::= <datetime factor>

<datetime factor> ::= <datetime primary> [<time zone>]

<datetime primary> ::= <value expression primary> | <datetime value function>

<time zone> ::= AT <time zone specifier>

<time zone specifier> ::= LOCAL | TIME ZONE { <interval primary> | <time zone
name> }

Specify a datetime value. Details are described in the SQL Language chapter.

datetime value function

datetime value function

<datetime value function> ::= ...

Specify a function that returns a datetime value. The supported datetime value functions are listed and described in
the Built In Functions chapter.

interval term

Data Access and Change

132

interval value expression

<interval value expression> ::= <interval term> | <interval value expression
1> <plus sign> <interval term 1> | <interval value expression 1> <minus sign>
<interval term 1> | <left paren> <datetime value expression> <minus sign>
<datetime term> <right paren> <interval qualifier>

<interval term> ::= <interval factor> | <interval term 2> <asterisk> <factor>
| <interval term 2> <solidus> <factor> | <term> <asterisk> <interval factor>

<interval factor> ::= [<sign>] <interval primary>

<interval primary> ::= <value expression primary> [<interval qualifier>] |
<interval value function>

<interval value expression 1> ::= <interval value expression>

<interval term 1> ::= <interval term>

<interval term 2> ::= <interval term>

Specify an interval value. Details are described in the SQL Language chapter.

interval absolute value function

interval value function

<interval value function> ::= <interval absolute value function>

<interval absolute value function> ::= ABS <left paren> <interval value
expression> <right paren>

Specify a function that returns the absolute value of an interval. If the interval is negative, it is negated, otherwise
the original value is returned.

boolean value expression

boolean value expression

<boolean value expression> ::= <boolean term> | <boolean value expression> OR
<boolean term>

<boolean term> ::= <boolean factor> | <boolean term> AND <boolean factor>

<boolean factor> ::= [NOT] <boolean test>

<boolean test> ::= <boolean primary> [IS [NOT] <truth value>]

<truth value> ::= TRUE | FALSE | UNKNOWN

<boolean primary> ::= <predicate> | <boolean predicand>

<boolean predicand> ::= <parenthesized boolean value expression> |
<nonparenthesized value expression primary>

<parenthesized boolean value expression> ::= <left paren> <boolean value
expression> <right paren>

Specify a boolean value.

Data Access and Change

133

Predicates

Predicates are conditions and evaluate to a boolean value. Some predicates have two sides. The left side of the predicate,
the <row value predicand>, is the common element of all two-sided predicates. This element is a generalisation
of both <value expression>, which is a scalar, and of <explicit row value constructor>, which
is a row. The two sides of a predicate can be split in CASE expressions where the <row value predicand>
is part of multiple predicates.

In the following example, a column of the table is the left side of two predicates in a CASE expression.

SELECT CASE city WHEN 'Oslo' THEN 'Scandinavia' WHEN IN ('Dallas', 'Boston') THEN 'America' ELSE
 '?' END FROM customer

The number of fields in all <row value predicand> used in predicates must be the same and the types of the
fields in the same position must be compatible for comparison. If either of these conditions does not hold, an exception
is raised. The number of fields in a row is called the degree.

In many types of predicates (but not all of them), if the <row value predicand> evaluates to NULL, the result
of the predicate is UNKNOWN. If the <row value predicand> has more than one element, and one or more
of the fields evaluate to NULL, the result depends on the particular predicate.

comparison predicand

comparison predicate

<comparison predicate> ::= <row value predicand> <comp op> <row value predicand>

<comp op> ::= <equals operator> | <not equals operator> | <less than operator>
| <greater than operator> | <less than or equals operator> | <greater than or
equals operator>

Specify a comparison of two row values. If either <row value predicand> evaluates to NULL, the result of
<comparison predicate> is UNKNOWN. Otherwise, the result is TRUE, FALSE or UNKNOWN.

If the degree of <row value predicand> is larger than one, comparison is performed between each field and
the corresponding field in the other <row value predicand> from left to right, one by one.

When comparing two elements, if either field is NULL then the result is UNKNOWN.

For <equals operator>, if the result of comparison is TRUE for all field, the result of the predicate is TRUE. If
the result of comparison is FALSE for one field, the result of predicate is FALSE. Otherwise the result is UNKNOWN.

The <not equals operator> is translated to NOT (<row value predicand> = <row value
predicand>).

The <less than or equals operator> is translated to (<row value predicand> = <row value
predicand>) OR (<row value predicand> < <row value predicand>). The <greater than
or equals operator> is translated similarly.

For the <less than operator> and <greater than operator>, if two fields at a given position are
equal, then comparison continues to the next field. Otherwise, the result of the last performed comparison is returned
as the result of the predicate. This means that if the first field is NULL, the result is always UNKNOWN.

The logic that governs NULL values and UNKNOWN result is as follows: Suppose the NULL values were substituted
by arbitrary real values. If substitution cannot change the result of the predicate, then the result is TRUE or FALSE,
based on the existing non-NULL values, otherwise the result of the predicate is UNKNOWN.

Data Access and Change

134

The examples of comparison given below use literals, but the literals actually represent the result of evaluation of
some expression.

 ((1, 2, 3, 4) = (1, 2, 3, 4)) IS TRUE
 ((1, 2, 3, 4) = (1, 2, 3, 5)) IS FALSE
 ((1, 2, 3, 4) < (1, 2, 3, 4)) IS FALSE
 ((1, 2, 3, 4) < (1, 2, 3, 5)) IS TRUE
 ((NULL, 1, NULL) = (NULL, 1, NULL)) IS UNKNOWN
 ((NULL, 1, NULL) = (NULL, 2, NULL)) IS FALSE
 ((NULL, 1, NULL) <> (NULL, 2, NULL)) IS TRUE
 ((NULL, 1, 2) <all operators> (NULL, 1, 2)) IS UNKNOWN
 ((1, NULL, ...) < (1, 2, ...)) IS UNKNOWN
 ((1, NULL, ...) < (2, NULL, ...)) IS TRUE
 ((2, NULL, ...) < (1, NULL, ...)) IS FALSE

BETWEEN

between predicate

<between predicate> ::= <row value predicand> <between predicate part 2>

<between predicate part 2> ::= [NOT] BETWEEN [ASYMMETRIC | SYMMETRIC] <row
value predicand> AND <row value predicand>

Specify a range comparison. The default is ASYMMETRIC. The expression X BETWEEN Y AND Z is equivalent
to (X >= Y AND X <= Z). Therefore, if Y > Z, the BETWEEN expression is never true. The expression X
BETWEEN SYMMETRIC Y AND Z is equivalent to (X >= Y AND X <= Z) OR (X >= Z AND X <=
Y). The expression Z NOT BETWEEN ... is equivalent to NOT (Z BETWEEN ...). If any of the three <row
value predicand> evaluates to NULL, the result is UNKNOWN.

IN

in predicate

<in predicate> ::= <row value predicand> [NOT] IN <in predicate value>

<in predicate value> ::= <table subquery> | <left paren> <in value list> <right
paren>

| <left paren> UNNEST <left paren> <array value expression> <right paren> <right
paren>

<in value list> ::= <row value expression> [{ <comma> <row value
expression> }...]

Specify a quantified comparison. The expression X NOT IN Y is equivalent to NOT (X IN Y). The (<in
value list>) is converted into a table with one or more rows. The expression X IN Y is equivalent to X =
ANY Y, which is a <quantified comparison predicate>.

If the <table subquery> returns no rows, the result is FALSE. Otherwise the <row value predicand> is
compared one by one with each row of the <table subquery>.

If the comparison is TRUE for at least one row, the result is TRUE. If the comparison is FALSE for all rows, the result
is FALSE. Otherwise the result is UNKNOWN.

HyperSQL supports an extension to the SQL Standard to allow an array to be used in the <in predicate value>.
This is intended to be used with prepared statements where a variable length array of values can be used as the

Data Access and Change

135

parameter value for each call. The example below shows how this is used in SQL. The JDBC code must create a new
java.sql.Array object that contains the values and set the parameter with this array.

 SELECT * FROM customer WHERE firstname IN (UNNEST(?))

 Connection conn;
 PreparedStatement ps;
 // conn and ps are instantiated here
 Array arr = conn.createArrayOf("INTEGER", new Integer[] {1, 2, 3});
 ps.setArray(1, arr);
 ResultSet rs = ps.executeQuery();

LIKE

like predicate

<like predicate> ::= <character like predicate> | <octet like predicate>

<character like predicate> ::= <row value predicand> [NOT] LIKE <character
pattern> [ESCAPE <escape character>]

<character pattern> ::= <character value expression>

<escape character> ::= <character value expression>

<octet like predicate> ::= <row value predicand> [NOT] LIKE <octet pattern>
[ESCAPE <escape octet>]

<octet pattern> ::= <binary value expression>

<escape octet> ::= <binary value expression>

Specify a pattern-match comparison for character or binary strings. The <row value predicand> is always
a <string value expression> of character or binary type. The <character pattern> or <octet
pattern> is a <string value expression> in which the underscore and percent characters have special
meanings. The underscore means match any one character, while the percent means match a sequence of zero or more
characters. The <escape character> or <escape octet> is also a <string value expression> that
evaluates to a string of exactly one character length. If the underscore or the percent is required as normal characters
in the pattern, the specified <escape character> or <escape octet> can be used in the pattern before the
underscore or the percent. The <row value predicand> is compared with the <character pattern> and
the result of comparison is returned. If any of the expressions in the predicate evaluates to NULL, the result of the
predicate is UNKNOWN. The expression A NOT LIKE B is equivalent to NOT (A LIKE B). If the length of the
escape is not 1 or it is used in the pattern not immediately before an underscore or a percent character, an exception
is raised.

IS NULL

null predicate

<null predicate> ::= <row value predicand> IS [NOT] NULL

Specify a test for a null value. The expression X IS NOT NULL is NOT equivalent to NOT (X IS NULL)if the
degree of the <row value predicand> is larger than 1. The rules are: If all fields are null, X IS NULL is TRUE
and X IS NOT NULL is FALSE. If only some fields are null, both X IS NULL and X IS NOT NULL are FALSE.
If all fields are not null, X IS NULL is FALSE and X IS NOT NULL is TRUE.

ALL and ANY

Data Access and Change

136

quantified comparison predicate

<quantified comparison predicate> ::= <row value predicand> <comp op>
<quantifier> <table subquery>

<quantifier> ::= <all> | <some>

<all> ::= ALL

<some> ::= SOME | ANY

Specify a quantified comparison. For a quantified comparison, the <row value predicand> is compared one
by one with each row of the <table sub query>.

If the <table subquery> returns no rows, then if ALL is specified the result is TRUE, but if SOME or ANY is
specified the result is FALSE.

If ALL is specified, if the comparison is TRUE for all rows, the result of the predicate is TRUE. If the comparison is
FALSE for at least one row, the result is FALSE. Otherwise the result is UNKNOWN.

If SOME or ANY is specified, if the comparison is TRUE for at least one row, the result is TRUE. If the comparison is
FALSE for all rows, the result is FALSE. Otherwise the result is UNKNOWN. Note that the IN predicate is equivalent
to the SOME or ANY predicate using the <equals operator>.

In the examples below, the date of an invoice is compared to holidays in a given year. In the first example the invoice
date must equal one of the holidays, in the second example it must be later than all holidays (later than the last holiday),
in the third example it must be on or after some holiday (on or after the first holiday), and in the fourth example, it
must be before all holidays (before the first holiday).

 invoice_date = SOME (SELECT holiday_date FROM holidays)
 invoice_date > ALL (SELECT holiday_date FROM holidays)
 invoice_date >= ANY (SELECT holiday_date FROM holidays)
 invoice_date < ALL (SELECT holiday_date FROM holidays)

EXISTS

exists predicate

<exists predicate> ::= EXISTS <table subquery>

Specify a test for a non-empty set. If the evaluation of <table subquery> results in one or more rows, then the
expression is TRUE, otherwise FALSE.

UNIQUE

unique predicate

<unique predicate> ::= UNIQUE <table subquery>

Specify a test for the absence of duplicate rows. The result of the test is either TRUE or FALSE (never UNKNOWN).
The rows of the <table subquery> that contain one or more NULL values are not considered for this test. If the
rest of the rows are distinct from each other, the result of the test is TRUE, otherwise it is FALSE. The distinctness of
rows X and Y is tested with the predicate X IS DISTINCT FROM Y.

MATCH

match predicate

Data Access and Change

137

<match predicate> ::= <row value predicand> MATCH [UNIQUE] [SIMPLE | PARTIAL
| FULL] <table subquery>

Specify a test for matching rows. The default is MATCH SIMPLE without UNIQUE. The result of the test is either
TRUE or FALSE (never UNKNOWN).

The interpretation of NULL values is different from other predicates and quite counter-intuitive. If the <row value
predicand> is NULL, or all of its fields are NULL, the result is TRUE.

Otherwise, the <row value predicand> is compared with each row of the <table subquery>.

If SIMPLE is specified, if some field of <row value predicate> is NULL, the result is TRUE. Otherwise if
<row value predicate> is equal to one or more rows of <table subquery> the result is TRUE if UNIQUE
is not specified, or if UNIQUE is specified and only one row matches. Otherwise the result is FALSE.

If PARTIAL is specified, if the non-null values <row value predicate> are equal to those in one or more
rows of <table subquery> the result is TRUE if UNIQUE is not specified, or if UNIQUE is specified and only
one row matches. Otherwise the result is FALSE.

If FULL is specified, if some field of <row value predicate> is NULL, the result is FALSE. Otherwise if
<row value predicate> is equal to one or more rows of <table subquery> the result is TRUE if UNIQUE
is not specified, or if UNIQUE is specified and only one row matches.

Note that MATCH can also be used in FOREIGN KEY constraint definitions. The exact meaning is described in the
Schemas and Database Objects chapter.

CONTAINS

contains predicate

<contains predicate> ::= PERIOD <row value predicand> CONTAINS PERIOD <row value
predicand>

Specify a test for two datetime periods. Each <row value predicand> must have two fields and the fields
together represent a datetime period. So the predicates is always in the form PERIOD (X1, X2) CONTAINS
PERIOD (Y1, Y2). Fields in each period are always a datetime value of the same type (DATE or TIMESTAMP).

All datetime values are converted to TIMESTAMP WITH TIME ZONE. The second datetime value must be after the
first, otherwise a data error is returned.

If the second period is fully within the first period, the result is TRUE. Otherwise it is false.

If any of the values is NULL, the result is UNDEFINED.

EQUALS

equals predicate

<equals predicate> ::= PERIOD <row value predicand> EQUALS PERIOD <row value
predicand>

Specify a test for two datetime periods. The conversions and checks are applied the same way as with the CONTAINS
predicate. If the two periods have the same begin and end datetime values the result is TRUE. Otherwise it is false.

If any of the values is NULL, the result is UNDEFINED.

IS DISTINCT

Data Access and Change

138

is distinct predicate

<distinct predicate> ::= <row value predicand> IS [NOT] DISTINCT FROM <row
value predicand>

Specify a test of whether two row values are distinct. The result of the test is either TRUE or FALSE (never
UNKNOWN). The degree the two <row value predicand> must be the same. Each field of the first <row
value predicand> is compared to the field of the second <row value predicand> at the same position.
If one field is NULL and the other is not NULL, or if the elements are NOT equal, then the result of the expression
is TRUE. If no comparison result is TRUE, then the result of the predicate is FALSE. The expression X IS NOT
DISTINCT FROM Y is equivalent to NOT (X IS DISTINCT FORM Y). The following check returns true if
startdate is not equal to enddate. It also returns true if either startdate or enddate is NULL. It returns false in other cases.

 startdate IS DISTINCT FROM enddate

OVERLAPS

overlaps predicate

<overlaps predicate> ::= <row value predicand> OVERLAPS <row value predicand>

<overlaps predicate> ::= PERIOD <row value predicand> OVERLAPS PERIOD <row value
predicand>

The OVERLAPS predicate tests for an overlap between two datetime periods. This predicate has two forms. The one
without the PERIOD keywords is more relaxed in terms of valid periods.

If there is there is any overlap between the two datetime periods, the result is TRUE. Otherwise it is false.

If any of the values is NULL, the result is UNDEFINED.

In the example below, the period is compared with a week long period ending yesterday.

 (startdate, enddate) OVERLAPS (CURRENT_DATE - 7 DAY, CURRENT_DATE - 1 DAY)

PRECEDES

precedes predicate

<precedes predicate> ::= PERIOD <row value predicand> [IMMEDIATELY] PRECEDES
PERIOD <row value predicand>

Specify a test for two datetime periods. The conversions and checks are applied the same way as with the CONTAINS
predicate. If the second period begins after the end of the first period, the result is TRUE. Otherwise it is false.

If IMMEDIATELY is specified, the second period must follow immediately after the end of the first period. This
means the end of the first period is the same point of time as the start of the second period.

If any of the values is NULL, the result is UNDEFINED.

SUCCEEDS

succeeds predicate

<succeeds predicate> ::= PERIOD <row value predicand> [IMMEDIATELY] SUCCEEDS
PEDIOD <row value predicand>

Data Access and Change

139

Specify a test for two datetime periods with similar syntax to PRECEDES. If the first period begins after the end of
the second period, the result is TRUE. Otherwise it is false.

If IMMEDIATELY is specified, the first period must follow immediately after the end of the second period.

If any of the values is NULL, the result is UNKNOWN.

The example below shows a predicate that returns TRUE.

PERIOD (CURRENT_DATE - 7 DAY, CURRENT_DATE) IMMEDIATELY PRECEDES (CURRENT_DATE, CURRENT_DATE + 7
 DAY)

Aggregate Functions
aggregate function

aggregate function

<aggregate function> ::= COUNT <left paren> <asterisk> <right paren> [<filter
clause>] | <general set function> [<filter clause>] | <array aggregate
function> [<filter clause>]

<general set function> ::= <set function type> <left paren> [<set quantifier>]
<value expression> <right paren>

<set function type> ::= <computational operation>

<computational operation> ::= AVG | MAX | MIN | SUM | EVERY | ANY | SOME | COUNT
| STDDEV_POP | STDDEV_SAMP | VAR_SAMP | VAR_POP | MEDIAN

<set quantifier> ::= DISTINCT | ALL

<filter clause> ::= FILTER <left paren> WHERE <search condition> <right paren>

<array aggregate function> ::= ARRAY_AGG <left paren> [<set quantifier>]
<value expression> [<order by clause>] <right paren>

<group concat function> ::= GROUP_CONCAT <left paren> [<set quantifier>]
<value expression> [<order by clause>] [SEPARATOR <separator>] <right paren>

<separator> ::= <character string literal>

Specify a value computed from a collection of rows.

An aggregate function is used exclusively in a <query specification> and its use transforms a normal query
into an aggregate query returning a single row instead of the multiple rows that the original query returns. For example,
SELECT acolumn <table expression> is a query that returns the value of acolumn for all the rows the satisfy
the given condition. But SELECT MAX(acolumn) <table expression> returns only one row, containing
the largest value in that column. The query SELECT COUNT(*) <table expression> returns the count of
rows, while SELECT COUNT(acolumn) <table expression> returns the count of rows where acolumn
IS NOT NULL.

If the <table expression> is a grouped table (has a GROUP BY clause), the aggregate function returns the result
of the COUNT or <computational operation> for each group. In this case the result has the same number
of rows as the original grouped query. For example, SELECT SUM(acolumn) <table expression> when
<table expression> has a GROUP BY clause, returns the sum of values for acolumn in each group.

If all values are NULL, the aggregate function (except COUNT) returns NULL.

Data Access and Change

140

The SUM operations can be performed on numeric and interval expressions only. AVG and MEDIAN can be performed
on numeric, interval or datetime expressions. AVG returns the average value, while SUM returns the sum of all values.
MEDIAN returns the middle value in the sorted list of values.

MAX and MIN can be performed on all types of expressions and return the minimum or the maximum value.

COUNT(*) returns the count of all values, including nulls, while COUNT(<value expression>) returns the
count of non-NULL values. COUNT with DISTINCT also accepts multiple arguments. In this usage the distinct
combinations of the arguments are counted. Examples below:

 SELECT COUNT(DISTINCT firstname, lastname) FROM customer
 SELECT COUNT(DISTINCT (firstname, lastname)) FROM customer

The EVERY, ANY and SOME operations can be performed on boolean expressions only. EVERY returns TRUE if
all the values are TRUE, otherwise FALSE. ANY and SOME are the same operation and return TRUE if one of the
values is TRUE, otherwise it returns FALSE.

The other operations perform the statistical functions STDDEV_POP, STDDEV_SAMP, VAR_SAMP, VAR_POP
on numeric values. NULL values are ignored in calculations.

User-defined aggregate functions can be defined and used instead of the built-in aggregate functions. Syntax and
examples are given in the SQL-Invoked Routines chapter.

The <filter clause> allows you to add a search condition. When the search condition evaluates to TRUE for
a row, the row is included in aggregation. Otherwise the row is not included. In the example below a single query
returns two different filtered counts:

 SELECT COUNT(ITEM) FILTER (WHERE GENDER = 'F') AS "FEMALE COUNT", COUNT(ITEM) FILTER (WHERE
 GENDER = 'M') AS "MALE COUNT" FROM PEOPLE

ARRAY_AGG is different from all other aggregate functions, as it does not ignore the NULL values. This set function
returns an array that contains all the values, for different rows, for the <value expression>. For example, if the
<value expression> is a column reference, the SUM function adds the values for all the row together, while the
ARRAY_AGG function adds the value for each row as a separate element of the array. ARRAY_AGG can include an
optional <order by clause>. If this is used, the elements of the returned array are sorted according to the <order
by clause>, which can reference all the available columns of the query, not just the <value expression>
that is used as the ARRAY_AGG argument. The <order by clause> can have multiple elements (columns) and
each element can include NULLS LAST or DESC qualifiers. No <separator> is used with this function.

GROUP_CONCAT is a specialised function derived from ARRAY_AGG. This function computes the array in the
same way as ARRAY_AGG, removes all the NULL elements, then returns a string that is a concatenation of the
elements of the array. If <separator> has been specified, it is used to separate the elements of the array. Otherwise
the comma is used to separate the elements.

The example below shows a grouped query with ARRAY_AGG and GROUP_CONCAT. The CUSTOMER table that
is included for tests in the DatabaseManager GUI app is the source of the data.

 SELECT LASTNAME, ARRAY_AGG(FIRSTNAME ORDER BY FIRSTNAME) FROM Customer GROUP BY LASTNAME

 LASTNAME C2
 --------- --
 Steel ARRAY['John','John','Laura','Robert']
 King ARRAY['George','George','James','Julia','Robert','Robert']
 Sommer ARRAY['Janet','Robert']

 SELECT LASTNAME, GROUP_CONCAT(DISTINCT FIRSTNAME ORDER BY FIRSTNAME DESC SEPARATOR ' * ') FROM
 Customer GROUP BY LASTNAME

 LASTNAME C2

Data Access and Change

141

 --------- ---
 Steel Robert * Laura * John
 King Robert * Julia * James * George
 Sommer Robert * Janet

Other Syntax Elements
search condition

search condition

<search condition> ::= <boolean value expression>

Specify a condition that is TRUE, FALSE, or UNKNOWN. A search condition is often a predicate.

PATH

path specification

<path specification> ::= PATH <schema name list>

<schema name list> ::= <schema name> [{ <comma> <schema name> }...]

Specify an order for searching for a user-defined SQL-invoked routine. This is not currently supported by HyperSQL.

routine invocation

routine invocation

<routine invocation> ::= <routine name> <SQL argument list>

<routine name> ::= [<schema name> <period>] <qualified identifier>

<SQL argument list> ::= <left paren> [<SQL argument> [{ <comma> <SQL
argument> }...]] <right paren>

<SQL argument> ::= <value expression> | <target specification>

Invoke an SQL-invoked routine. Examples are given in the SQL-Invoked Routines chapter.

COLLATE

collate clause

<collate clause> ::= COLLATE <collation name>

Specify a collation for a column or for an ORDER BY expression. This collation is used for comparing the values of the
column in different rows. Comparison can happen during the execution of SELECT, UPDATE or DELETE statements,
when a UNIQUE constraint or index is defined on the column, or when the rows are sorted by an ORDER BY clause.

CONSTRAINT

constraint name definition

<constraint name definition> ::= CONSTRAINT <constraint name>

<constraint characteristics> ::= <constraint check time> [[NOT] DEFERRABLE]
| [NOT] DEFERRABLE [<constraint check time>]

<constraint check time> ::= INITIALLY DEFERRED | INITIALLY IMMEDIATE

Data Access and Change

142

Specify the name of a constraint and its characteristics. The deferrable characteristic is an optional element of
CONSTRAINT definition, not yet supported by HyperSQL.

Data Access Statements
HyperSQL fully supports all of SQL-92 data access statements, plus most of the additions from SQL:2011. Due to
time constraints, the current version of this Guide does not cover the subject fully. You are advised to consult an SQL
book such as the O'Reilly title, "SQL and Relational Theory" by C. J. Date.

Database queries are data access statements. The most commonly used data access statement is the SELECT statement,
but there are other statements that perform a similar role. Data access statements access tables and return result tables.
The returned result tables are falsely called result sets, as they are not necessarily sets of rows, but multisets of rows.

Result tables are formed by performing the following operations on base tables and views. These operations are loosely
based on Relational Algebra.

JOIN operations

SET and MULTISET operations

SELECTION

PROJECTION

COMPUTING

COLUMN NAMING

GROUPING and AGGREGATION

SELECTION AFTER GROUPING OR AGGREGATION

SET and MULTISET (COLLECTION) OPERATIONS

ORDERING

SLICING

Conceptually, the operations are performed one by one in the above order if they apply to the given data access
statement. In the example below a simple select statement is made more complex by adding various operations.

 CREATE TABLE atable (a INT, b INT, c INT, d INT, e INT, f INT);
 /* in the next SELECT, no join is performed and no further operation takes place */
 SELECT * FROM atable
 /* in the next SELECT, selection is performed by the WHERE clause, with no further action */
 SELECT * FROM atable WHERE a + b = c
 /* in the next SELECT, projection is performed after the other operations */
 SELECT d, e, f FROM atable WHERE a + b = c
 /* in the next SELECT, computation is performed after projection */
 SELECT (d + e) / f FROM atable WHERE a + b = c
 /* in the next two SELECT statements, column naming is performed in different ways*/
 SELECT (a + e) / f AS calc, f AS div FROM atable WHERE a + b = c
 SELECT dcol, ecol, fcol FROM atable(acol, bcol, ccol, dcol, ecol, fcol) WHERE acol + bcol = ccol
 /* in the next SELECT, both grouping and aggregation is performed */
 SELECT d, e, SUM(f) FROM atable GROUP BY d, e
 /* in the next SELECT, selection is performed after grouping and aggregation is performed */
 SELECT d, e, SUM(f) FROM atable GROUP BY d, e HAVING SUM(f) > 10
 /* in the next SELECT, a UNION is performed on two selects from the same table */
 SELECT d, e, f FROM atable WHERE d = 3 UNION SELECT a, b, c FROM atable WHERE a = 30
 /* in the next SELECT, ordering is performed */

Data Access and Change

143

 SELECT (a + e) / f AS calc, f AS div FROM atable WHERE a + b = c ORDER BY calc DESC, div NULLS
 LAST
 /* in the next SELECT, slicing is performed after ordering */
 SELECT * FROM atable WHERE a + b = c ORDER BY a FETCH 5 ROWS ONLY

The following sections discuss various types of tables and operations involved in data access statements.

Select Statement
The SELECT statement itself does not cover all types of data access statements, which may combine multiple SELECT
statements. The <query specification> is the most common data access statement and begins with the
SELECT keyword.

SELECT STATEMENT

select statement (general)

Users generally refer to the SELECT statement when they mean a <query specification> or <query
expression>. If a statement begins with SELECT and has no UNION or other set operations, then it is a <query
specification>. Otherwise it is a <query expression>.

Table
In data access statements, a table can be a database table (or view) or an ephemeral table formed for the duration of the
query. Some types of table are <table primary> and can participate in joins without the use of extra parentheses.
The BNF in the Table Primary section below lists different types of <table primary>:

Tables can also be formed by specifying the values that are contained in them:

<table value constructor> ::= VALUES <row value expression list>

<row value expression list> ::= <table row value expression> [{ <comma> <table
row value expression> }...]

In the example below a table with two rows and 3 columns is constructed out of some values:

 VALUES (12, 14, null), (10, 11, CURRENT_DATE)

When a table is used directly in a UNION or similar operation, the keyword TABLE is used with the name:

<explicit table> ::= TABLE <table or query name>

In the examples below, all rows of the two tables are included in the union. The keyword TABLE is used in the first
example. The two examples below are equivalent.

 TABLE atable UNION TABLE anothertable
 SELECT * FROM atable UNION SELECT * FROM anothertable

Subquery
A subquery is simply a query expression in brackets. A query expression is usually a complete SELECT statement and
is discussed in the rest of this chapter. A scalar subquery returns one row with one column. A row subquery returns one
row with one or more columns. A table subquery returns zero or more rows with one or more columns. The distinction
between different forms of subquery is syntactic. Different forms are allowed in different contexts. If a scalar subquery
or a row subquery return more than one row, an exception is raised. If a scalar or row subquery returns no row, it is
usually treated as returning a NULL. Depending on the context, this has different consequences.

Data Access and Change

144

<scalar subquery> ::= <subquery>

<row subquery> ::= <subquery>

<table subquery> ::= <subquery>

<subquery> ::= <left paren> <query expression> <right paren>

Query Specification

A query specification is also known as a SELECT statement. It is the most common form of <derived table>
. A <table expression> is a base table, a view or any form of allowed derived table. The SELECT statement
performs projection, naming, computing, or aggregation on the rows of the <table expression> .

<query specification> ::= SELECT [DISTINCT | ALL] <select list> <table
expression>

<select list> ::= <asterisk> | <select sublist> [{ <comma> <select
sublist> }...]

<select sublist> ::= <derived column> | <qualified asterisk>

<qualified asterisk> ::= <asterisked identifier chain> <period> <asterisk>

<asterisked identifier chain> ::= <asterisked identifier> [{ <period>
<asterisked identifier> }...]

<asterisked identifier> ::= <identifier>

<derived column> ::= <value expression> [<as clause>]

<as clause> ::= [AS] <column name>

The qualifier DISTINCT or ALL apply to the results of the SELECT statement after all other operations have been
performed. ALL simply returns the rows, while DISTINCT compares the rows and removes the duplicate ones.

Projection is performed by the <select list>.

A single <asterisk> means all columns of the <table expression> are included, in the same order as they
appear in the <table expression>. An asterisk qualified by a table name means all the columns of the qualifier
table name are included. If an unqualified asterisk is used, then no other items are allowed in the <select list>.
When the <table expression> is the direct result of NATURAL or USING joins, the use of <asterisk>
includes the columns used for the join before the other columns. A qualified asterisk does not cover the join columns.

A derived column is a <value expression>, optionally named with the <as clause>. A <value
expression> can be many things. Common types include: the name of a column in the <table expression>;
an expression based on different columns or constant values; a function call; an aggregate function; a CASE WHEN
expression.

Table Expression

A table expression is part of the SELECT statement and consists of the FROM clause with optional other clauses that
performs selection (of rows) and grouping from the table(s) in the FROM clause.

<table expression> ::= <from clause> [<where clause>] [<group by clause>]
[<having clause>]

Data Access and Change

145

<from clause> ::= FROM <table reference> [{ <comma> <table reference> }...]

<table reference> ::= <table primary> | <joined table>

<table primary> ::= <table or query name> [<query system time period
specification>] [[AS] <correlation name> [<left paren> <derived column
list> <right paren>]]

| <derived table> [AS] <correlation name> [<left paren> <derived column
list> <right paren>]

| <lateral derived table> [AS] <correlation name> [<left paren> <derived
column list> <right paren>]

| <collection derived table> [AS] <correlation name> [<left paren> <derived
column list> <right paren>]

| <table function derived table> [AS] <correlation name> [<left paren>
<derived column list> <right paren>]

| <parenthesized joined table> [AS] <correlation name> [<left paren> <derived
column list> <right paren>]

<where clause> ::= WHERE <boolean value expression>

<group by clause> ::= GROUP BY [<set quantifier>] <grouping element> [{ <comma>
<grouping element> }...]

<having clause> ::= HAVING <boolean value expression>

<query system time period specification> ::= FOR SYSTEM_TIME AS OF <point in
time 1>

| FOR SYSTEM_TIME BETWEEN [SYMMETRIC] <point in time 1> AND <point in time 2>

| FOR SYSTEM_TIME FROM <point in time 1> TO <point in time 2>

The <from clause> contains one or more <table reference> separated by commas. A table reference is
often a table or view name or a joined table.

The <where clause> filters the rows of the table in the <from clause> and removes the rows for which the search
condition is not TRUE.

Table primary refers to different forms of table reference in the FROM clause.

Table or Query Name

The simplest form of reference is simply a name. This is the name of a table, a view, a transition table in a trigger
definition, or a query name specified in the WITH clause of a query expression.

<table or query name> ::= <table name> | <transition table name> | <query name>

System Time Period

The <query system time period specification> can be used after the name of a system-versioned
table to query historic data in the table. Without this clause, only the current rows of the table are returned and historic
rows are ignored. The first example below shows a list of customers as of a year ago. The second example also shows
any changes made to the email column over the previous year.

Data Access and Change

146

SELECT firstname, lastname, email FROM customer FOR SYSTEM_TIME AS OF CURRENT_TIMESTAMP - 1 YEAR

SELECT DISTINCT firstname, lastname, email FROM customer FOR SYSTEM_TIME FROM CURRENT_TIMESTAMP -
 2 YEAR TO CURRENT_TIMESTAMP - 1 YEAR

Derived Table

derived table

A query expression that is enclosed in parentheses and returns from zero to many rows is a <table subquery>.
In a <derived table> the query expression is self contained and cannot reference the columns of other table
references. This is the traditional and most common form of use of a <table subquery>.

<derived table> ::= <table subquery>

Lateral

LATERAL

When the word LATERAL is used before a <table subquery>, it means the query expression can reference the
columns of other table references that go before it.

<lateral derived table> ::= LATERAL <table subquery>

The use of <lateral derived table> completely transforms the way a query is written. For example, the two
queries below are equivalent, but with different forms. The query with LATERAL is evaluated separately for each row
of the first table that satisfies the WHERE condition. The example below uses the tables that are created and populated
in DatabaseManagerSwing with the "Insert test data" menu option. The first query uses a scalar subquery to compute
the sum of invoice values for each customer. The second query is equivalent and uses a join with a LATERAL table.

SELECT firstname, lastname, (SELECT SUM(total) FROM invoice WHERE customerid = customer.id) s
 FROM customer

SELECT firstname, lastname, a.c FROM customer, LATERAL(SELECT SUM(total) FROM invoice WHERE
 customerid = customer.id) a (c)

UNNEST

UNNEST

UNNEST is similar to LATERAL, but instead of a query expression, one or more expressions that return an array
are used. These expressions are converted into a table which has one column for each expression and contains the
elements of the array. If WITH ORDINALITY is used, an extra column that contains the index of each element is
added to this table. The number of rows in the table equals the length of the largest arrays. The smaller arrays are
padded with NULL values. If an <array value expression> evaluates to NULL, an empty array is used in its place. The
array expression can contain references to any column of the table references preceding the current table reference.

<collection derived table> ::= UNNEST <left paren> <array value expression>, ...
<right paren> [WITH ORDINALITY]

The <array value expression> can be the result of a function call. If the arguments of the function call are
values from the tables on the left of the UNNEST, then the function is called for each row of table.

In the first example below, UNNEST is used with the built in-function SEQUENCE_ARRAY to build a table
containing dates for the last seven days and their ordinal position. In the second example, a select statement returns
costs for the last seven days . In the third example, the WITH clause turns the two selects into named subqueries which
are used in a SELECT statement that uses a LEFT join.

Data Access and Change

147

 SELECT * FROM UNNEST(SEQUENCE_ARRAY(CURRENT_DATE - 7 DAY, CURRENT_DATE - 1 DAY, 1 DAY)) WITH
 ORDINALITY AS T(D, I)

 D I
 ---------- -
 2010-07-25 1
 2010-07-26 2
 2010-07-27 3
 2010-07-28 4
 2010-07-29 5
 2010-07-30 6
 2010-07-31 7

 CREATE TABLE expenses (item_date DATE, cost DECIMAL(8,2))
 --
 SELECT item_date, SUM(cost) AS total FROM expenses WHERE item_date >= CURRENT_DATE - 7 DAY GROUP
 BY item_date

 ITEM_DATE TOTAL
 ---------- ------
 2010-07-27 100.12
 2010-07-29 50.45

 WITH costs(item_date, total) AS (SELECT item_date, SUM(cost) FROM expenses WHERE item_date >=
 CURRENT_DATE - 7 DAY GROUP BY item_date),
 dates(d, i) AS (SELECT * FROM UNNEST(SEQUENCE_ARRAY(CURRENT_DATE - 7 DAY, CURRENT_DATE - 1 DAY,
 1 DAY)) WITH ORDINALITY)
 SELECT i, d, total FROM dates LEFT OUTER JOIN costs ON dates.d = costs.item_date

 I D TOTAL
 - ---------- ------
 1 2010-07-25 (null)
 2 2010-07-26 (null)
 3 2010-07-27 100.12
 4 2010-07-28 (null)
 5 2010-07-29 50.45
 6 2010-07-30 (null)
 7 2010-07-31 (null)

Table Function Derived Table

Table Function Derived Table

When TABLE is used in this context, the <collection value expression> must be the result of a function
call to a built-in function or user-defined function that returns an array or a table. When the function returns an array,
this array is converted into a table, similar to the way UNNEST operates. When the function returns a table, the result
is a MULTISET and is used as is.

<table function derived table> ::= TABLE <left paren> <collection value
expression> <right paren>

Parenthesized Joined Table

A parenthesized joined table is simply a joined table contained in parentheses. Joined tables are discussed below.

<parenthesized joined table> ::= <left paren> <parenthesized joined table>
<right paren> | <left paren> <joined table> <right paren>

Column Name List

column name list

Data Access and Change

148

The column list that is specified for the table reference must contain names that are unique within the list

<derived column list> ::= <column name list>

<column name list> ::= <column name> [{ <comma> <column name> }...]

Joined Table
Joins are operators with two table as the operands, resulting in a third table, called joined table. All join operators are
evaluated left to right, therefore, with multiple joins, the table resulting from the first join operator becomes an operand
of the next join operator. Parentheses can be used to group sequences of joined tables and change the evaluation order.
So if more than two tables are joined together with join operators, the end result is also a joined table. There are
different types of join, each producing the result table in a different way.

<joined table> ::= <cross join> | <qualified join> | <natural join>

<cross join> ::= <table reference> CROSS JOIN <table factor>

<qualified join> ::= <table reference> | [<join type>] JOIN <table reference>
<join specification>

<natural join> ::= <table reference> NATURAL [<join type>] JOIN <table factor>

<join specification> ::= <join condition> | <named columns join>

<join condition> ::= ON <search condition>

<named columns join> ::= USING <left paren> <join column list> <right paren>

<join type> ::= INNER | <outer join type> [OUTER]

<outer join type> ::= LEFT | RIGHT | FULL

<join column list> ::= <column name list>

CROSS JOIN

The simplest form of join is CROSS JOIN. The CROSS JOIN of two tables is a table that has all the columns of the
first table, followed by all the columns of the second table, in the original order. Each row of the first table is combined
with each row of the second table to fill the rows of the new table. If the rows of each table form a set, then the rows
of the CROSS JOIN table form the Cartesian product of the rows of the two table operands.

Conditions are not allowed as part of a cross join, which is simply A CROSS JOIN B. Any conditions in a WHERE
clause are later applied to the table resulting from the cross join.

Tables in the FROM CLAUSE separated with commas, are equivalent to cross joins between the tables. Two joined
tables separated with a comma, such as A, B, is equivalent to (A) CROSS JOIN (B), which means the joined tables
A and B are populated separately before they are joined.

CROSS JOIN is not is not generally very useful, as it returns large result tables unless WHERE conditions are used.

UNION JOIN

The UNION JOIN has limited use in queries. The result table has the same columns as that of CROSS JOIN. Each
row of the first table is extended to the right with nulls and added to the new table. Each row of the second table is
extended to the left with nulls and added to the new table. The UNION JOIN is expressed as A UNION JOIN B.
This should not be confused with A UNION B, which is a set operation. Union join is for special applications and
is not commonly used.

Data Access and Change

149

JOIN ... ON

The condition join is similar to CROSS JOIN, but a condition is tested for each row of the new table and the row is
created only if the condition is true. This form of join is expressed as A JOIN B ON (<search condition>).

Equijoin is a condition join in which the search condition is an equality condition between on or more pairs of columns
from the two table. Equijoin is the most commonly used type of join.

SELECT a.*, b.* FROM a INNER JOIN b ON a.col_one = b.col_two

JOIN ... USING

NATURAL JOIN

Joins with USING or NATURAL keywords are similar to an equijoin but they cannot be replaced simply with an
equijoin. The new table is formed with the specified or implied shared columns of the two tables, followed by the rest
of the columns from each table. In NATURAL JOIN, the shared columns are all the column pairs that have the same
name in the first and second table. In JOIN USING, only columns names that are specified by the USING clause are
shared. The joins are expressed as A NATURAL JOIN B, and A JOIN B USING (<comma separated
column name list>).

The columns of the joined table are formed by the following procedures: In JOIN ... USING the shared columns are
added to the joined table in the same order as they appear in the column name list. In NATURAL JOIN the shared
columns are added to the joined table in the same order as they appear in the first table. In both forms of join, the non-
shared columns of the first table are added in the order they appear in the first table, finally the non-shared columns
of the second table are added in the order they appear in the second table.

The type of each shared column of the joined table is based on the type of the columns in the original tables. If the
original types are not exactly the same, the type of the shared column is formed by type aggregation. Type aggregations
selects a type that can represent values of both aggregated types. Simple type aggregation picks one of the types.
For example, SMALLINT and INTEGER, results in INTEGER, or VARCHAR(10) and VARCHAR(20) results in
VARCHAR(20). More complex type aggregation inherits properties from both types. For example DECIMAL(8) and
DECIMAL (6,2) results in DECIMAL (8,2).

In the examples below, the rows are joined exactly the same way, but the first query contains a.col_two and b.col_two
together with all the rest of the columns of both tables, while the second query returns only one copy of col_two.

 SELECT * FROM a INNER JOIN b ON a.col_two = b.col_two
 SELECT * FROM a INNER JOIN b USING (col_two)

OUTER JOIN

LEFT, RIGHT and FULL OUTER JOIN

The three qualifiers can be added to all types of JOIN except CROSS JOIN and UNION JOIN. First the new table is
populated with the rows from the original join. If LEFT is specified, all the rows from the first table that did not make
it into the new table are extended to the right with nulls and added to the table. If RIGHT is specified, all the rows
from the second table that did not make it into the new table are extended to the left with nulls and added to the table.
If FULL is specified, the addition of leftover rows is performed from both the first and the second table. These forms
are expressed by prefixing the join specification with the given keyword. For example, A LEFT OUTER JOIN B
ON (<search condition>) or A NATURAL FULL OUTER JOIN B or A FULL OUTER JOIN B USING
(<comma separated column name list>).

 SELECT a.*, b.* FROM a LEFT OUTER JOIN b ON a.col_one = b.col_two

Data Access and Change

150

Selection

Despite the name, selection has nothing to do with the list of columns in a SELECT statement. In fact, it refers to
the search condition used to limit the rows that from a result table (selection of rows, not columns). In SQL, simple
selection is expressed with a WHERE condition appended to a single table or a joined table. In some cases, this method
of selection is the only method available; for example in DELETE and UPDATE statements. But when it is possible
to perform the selection with join conditions, this is the better method, as it results in a clearer expression of the query.

Projection

Projection is selection of the columns from a simple or joined table to form a result table. Explicit projection is
performed in the SELECT statement by specifying the select column list. Some form of projection is also performed
in JOIN ... USING and NATURAL JOIN.

The joined table has columns that are formed according to the rules mentioned above. But in many cases, not all the
columns are necessary for the intended operation. If the statement is in the form, SELECT * FROM <joined table>,
then all the columns of <joined table> are returned. But normally, the columns to be returned are specified after the
SELECT keyword, separated from each other with commas.

Computed Columns

In the select list, it is possible to use expressions that reference any columns of <joined table>. Each of these expressions
forms a computed column. It is computed for each row of the result table, using the values of the columns of the
<joined table> for that row.

Naming

Naming is used to hide the original names of tables or table columns and to replace them with new names in the scope
of the query. Naming is also used for defining names for computed columns.

Without explicit naming, the name of a column is a predefined name. If the column is a column of a table, or is a named
parameter, the name is of the table column or parameter is used. Otherwise it is generated by the database engine.
HyperSQL generates column names such as C1, C2, etc. As generated naming is implementation defined according
to the SQL Standard, it is better to explicitly name the computed and derived columns in your applications.

Naming in Joined Table

Naming is performed by adding a new name after a table's real name and by adding a list of column names after the
new table name. Both table naming and column naming are optional, but table naming is required for column naming.
The expression A [AS] X (<comma separated column name list>) means table A is used in the
query expression as table X and its columns are named as in the given list. The original name A, or its original column
names, are not visible in the scope of the query. The BNF is given below. The <correlation name> can be the
same or different from the name of the table. The <derived column list> is a comma separated list of column
names. The degree of this list must be equal to the degree of the table. The column names in the list must be distinct.
They can be the same or different from the names of the table's columns.

<table or query name> [[AS] <correlation name> [<left paren> <derived column
list> <right paren>]]

In the examples below, the columns of the original tables are named (a, b, c, d, e, f). The two queries are equivalent.
In the second query, the table and its columns are renamed and the new names are used in the WHERE clauses:

 CREATE TABLE atable (a INT, b INT, c INT, d INT, e INT, f INT);
 SELECT d, e, f FROM atable WHERE a + b = c

Data Access and Change

151

 SELECT x, y, z FROM atable AS t (u, v, w, x, y, z) WHERE u + v = w

Naming in Select List

Naming in the SELECT list logically takes place after naming in the joined table. The new names for columns are
not visible in the immediate query expression or query expression. They become visible in the ORDER BY clause
and in the result table that is returned to the user. Or if the query expression is used as a derived table in an enclosing
query expression.

In the example below, the query is on the same table but with column renaming in the Select list. The new names are
used in the ORDER BY clause:

 SELECT x + y AS xysum, y + z AS yzsum FROM atable AS t (u, v, w, x, y, z) WHERE u + v = w ORDER
 BY xysum, yzsum

If the names xysum or yzsum are not used, the computed columns cannot be referenced in the ORDER BY list.

Name Resolution

In a joined table, if a column name appears in tables on both sides then any reference to the name must use the table
name in order to specify which table is being referred to.

Grouping Operations

Grouping Operations

Grouping results in the elimination of duplicate rows. A grouping operation is performed after the operations discussed
above. A simple form of grouping is performed by the use of DISTINCT after SELECT. This eliminates all the
duplicate rows (rows that have the same value in each of their columns when compared to another row). The other
form of grouping is performed with the GROUP BY clause. This form is usually used together with aggregation.

GROUP BY

<group by clause> ::= GROUP BY [<set quantifier>] <grouping element> [{ <comma>
<grouping element> }...]

<grouping element> ::= <ordinary grouping set> | <rollup list> | <cube list> |
<grouping sets specification> | <empty grouping set>

<ordinary grouping set> ::= <grouping column reference> | <left paren> <grouping
column reference list> <right paren>

<grouping column reference list> ::= <grouping column reference> [{ <comma>
<grouping column reference> }...]

<grouping column reference> ::= <column reference> [<collate clause>]

<rollup list> ::= ROLLUP <left paren> <ordinary grouping set list> <right paren>

<ordinary grouping set list> ::= <ordinary grouping set> [{ <comma> <ordinary
grouping set> }...]

<cube list> ::= CUBE <left paren> <ordinary grouping set list> <right paren>

<grouping sets specification> ::= GROUPING SETS <left paren> <grouping set list>
<right paren>

Data Access and Change

152

<grouping set list> ::= <grouping set> [{ <comma> <grouping set> }...]

<grouping set> ::= <ordinary grouping set> | <rollup list> | <cube list> |
<grouping sets specification> | <empty grouping set>

<empty grouping set> ::= <left paren> <right paren>

An ordinary <group by clause> is a comma separated list of columns of the table formed by the <from
clause> or expressions based on the columns. This is the most common usage and can be described as GROUP BY
<column reference> [{ <comma> <grouping column reference> }...].

When a <group by clause> is used, only the columns used in the <group by clause> or expressions
used there, can be used in the <select list>, together with any <aggregate function> on other columns.
In other words, the column names or expressions listed in the GROUP BY clause dictate what can be used in the
<select list>. After the rows of the table formed by the <from clause> and the <where clause> are
finalised, the grouping operation groups together the rows that have the same values in the columns of the <group
by clause>. Then any <aggregate function> in the <select list> is performed on each group, and
for each group, a row is formed that contains the values of the columns of the <group by clause> and the values
returned from each <aggregate function>.

When the type of <column reference> is character string, the <collate clause> can be used to specify
the collation used for grouping the rows. For example, a collation that is not case sensitive can be used, or a collation
for a different language than the original collation of the column.

The first example below shows a simple GROUP BY, while in the second example, has a HAVING condition.

 CREATE TABLE REVENUE(CHANNEL VARCHAR(20), YEAR INTEGER, COUNTRY VARCHAR(2), PROVINCE
 VARCHAR(20), SALES INTEGER);
 SELECT CHANNEL, YEAR, COUNTRY, SUM(SALES) FROM REVENUE GROUP BY CHANNEL, YEAR, COUNTRY;
 SELECT CHANNEL, YEAR, COUNTRY, SUM(SALES) FROM REVENUE GROUP BY CHANNEL, YEAR, COUNTRY HAVING
 SUM(SALES) > 50000;

An extended <group by clause> may comprise elements such as GROUPING SETS, ROLLUP, CUBE and
the empty grouping set. These syntax elements are expanded and then simplified into a list of parenthesized column
elements, which result in multiple grouping operations. HyperSQL supports all the syntax listed above. The example
below uses ROLLUP for grouping.

 SELECT CHANNEL, YEAR, COUNTRY, SUM(SALES) AS S
 FROM REVENUE
 GROUP BY ROLLUP(CHANNEL, YEAR, COUNTRY);

The ROLLUP is translated into 4 groupings: (channel, year, country), (channel, year), (channel), (). The result set will
contain the rows as grouped by (channel, year, country), then rows as grouped by (channel, year) with the country
column replaced by null, then rows as grouped by (channel) only, with year and country columns replaced by null,
then a single row representing the () empty group with all three columns replaced by null.

CHANNEL YEAR COUNTRY S
------------ ------ ------- -------
INTERNET 2009 GB 25000
INTERNET 2009 US 275000
INTERNET 2010 GB 45000
INTERNET 2010 US 500000
DIRECT SALES 2009 GB 162000
DIRECT SALES 2009 US 1602500
DIRECT SALES 2010 GB 181000
DIRECT SALES 2010 US 1833000
INTERNET 2009 (null) 300000
INTERNET 2010 (null) 545000
DIRECT SALES 2009 (null) 1764500

Data Access and Change

153

DIRECT SALES 2010 (null) 2014000
INTERNET (null) (null) 845000
DIRECT SALES (null) (null) 3778500
(null) (null) (null) 4623500

If CUBE is used instead of ROLLUP, other permutations of the three columns are added to those produced by
ROLLUP. These include (channel, country), (year, country), (year) and (country).

The optional <set quantifier> is either ALL or DISTINCT and defaults to ALL. When GROUPING SETS is used
and multiple sets are specified and some duplicate groups are created as a result, use of DISTINCT eliminates the
duplicate groups.

Note any ordering of the rows returned by GROUP BY in incidental. You need to use ORDER BY for the ordering
you require.

HAVING

A <having clause> filters the rows of the table that is formed after applying the <group by clause> using
its search condition. The search condition must be an expression based on the expressions in the GROUP BY list or
the aggregate functions used.

DISTINCT

SELECT DISTINCT

When the keyword DISTINCT is used after SELECT, it works as a shortcut replacement for a simple GROUP BY
clause. The expressions in the SELECT list are used directly as the <group by clause>. The following examples
of SELECT DISTINCT and SELECT with GROUP BY are equivalent.

 SELECT DISTINCT d, e + f FROM atable WHERE a + b = c
 SELECT d, e + f FROM atable WHERE a + b = c GROUP BY d, e + f

Aggregation

Aggregation is an operation that computes a single value from the values of a column over several rows. The operation
is performed with an aggregate function. The simplest form of aggregation is counting, performed by the COUNT
function.

Other common aggregate functions return the maximum, minimum and average value among the values in different
rows. Aggregate functions were discussed earlier in this chapter.

Set Operations

Set and Multiset Operations

While join operations generally result in laterally expanded tables, SET and COLLECTION operations are performed
on two tables that have the same degree and result in a table of the same degree. The SET operations are UNION,
INTERSECT and EXCEPT (difference). When each of these operations is performed on two tables, the collection
of rows in each table and in the result is reduced to a set of rows, by eliminating duplicates. The set operations are
then performed on the two tables, resulting in the new table which itself is a set of rows. Collection operations are
similar but the tables are not reduced to sets before or after the operation and the result is not necessarily a set, but
a collection of rows.

The set operations on two tables A and B are: A UNION [DISTINCT] B, A INTERSECT [DISTINCT] B and A
EXCEPT [DISTINCT] B. The result table is formed in the following way: The UNION operation adds all the rows
from A and B into the new table, but avoids copying duplicate rows. The INTERSECT operation copies only those

Data Access and Change

154

rows from each table that also exist in the other table, but avoids copying duplicate rows. The EXCEPT operation
copies those rows from the first table which do not exist in the second table, but avoids copying duplicate rows.

The collection operations are similar to the set operations, but can return duplicate rows. They are: A UNION ALL
B, A INTERSECT ALL B and A EXCEPT ALL B. The UNION ALL operation adds all the rows from A and
B into the new table. The INTERSECT operation copies only those rows from each table that also exist in the other
table. If n copies of a rows exists in one table, and m copies in the other table, the number of copies in the result table
is the smaller of n and m. The EXCEPT operation copies those rows from the first table which do not exist in the
second table. If n copies of a row exist in the first table and m copies in the second table the number of copies in the
result table is n-m, or if n < m, then zero.

With Clause and Recursive Queries

The optional WITH clause can be used in a query expression. The WITH clause lists one or more named ephemeral
tables that can be referenced in the query expression body. The ephemeral tables are created and populated before
the rest of the query expression is executed. Their contents do not change during the execution of the <query
expression body> that follows the WITH clause.

<with clause> ::= WITH [RECURSIVE] <with list>

<with list> ::= <with list element> [{ <comma> <with list element> }...]

<with list element> ::= <query name> [<left paren> <with column list> <right
paren>] AS <left paren> <query expression> <right paren>

<with column list> ::= <column name list>

An example of the use of the WITH clause is given above under UNNEST. The <query expression> in the
WITH clause is evaluated and its result table can be referenced in the body of the main <query expression
body> using the specified <query name>.

When RECURSIVE is used, the <with column list> must be defined. The RECURSIVE keyword changes the
way the <with list> is interpreted. The <query expression> contained in the <with list element>
must be the UNION or UNION ALL of two <query expression body> elements (VALUES or SELECT statements).
A working table is created and the left side SELECT of the UNION is evaluated only once and its result is copied to
the working table. This result is also copied to the general result of the <query expression>. Iteration starts after
this step. In each iteration, the right side SELECT is evaluated. The contents of the working table is used when the
<query name> is referenced in the right side SELECT statement of the UNION. The result of this SELECT is then
added to the previous general result of the <query expression> with UNION or UNION ALL. The working
table is cleared and filled with the latest result. These operations are repeated again and again, until the latest result
is empty and the general result of the <query expression> stops changing. The result of the <with list
element> is now fully populated and is later used in the execution of the <query expression body> that
follows the WITH clause.

HyperSQL limits recursion to 256 rounds. If this is exceeded, an error is raised.

From version 2.6, HyperSQL extends recursive query processing by allowing the use of RECURSIVE_TABLE to
reference the current general result of the <query expression>. This table name can be used in subqueries with
an IN predicate in order to reduce and limit the new result created in each iteration.

A trivial example of a recursive query is given below. Note the first column GEN. For example, if each row of the table
represents a member of a family of dogs, together with its parent, the first column of the result indicates the calculated
generation of each dog, ranging from first to fourth generation.

 CREATE TABLE pptree (pid INT, id INT, name VARCHAR(10));

Data Access and Change

155

 INSERT INTO pptree VALUES (NULL, 1, 'dizzi'),(1,2, 'fizzi'),
 (1,3, 'gizzi'),(2,4, 'kizzi'),
 (4,5, 'mizzi'),(3,6, 'pizzi'),
 (3,7, 'tizzi');

 WITH RECURSIVE tree (gen, par, child, name) AS (
 VALUES(1, CAST(null as int), 1, 'dizzi')
 UNION
 SELECT gen + 1, pid, id, name FROM pptree, tree WHERE pid = child
) SELECT * FROM tree;

 GEN PAR CHILD NAME
 --- ------ ----- -----
 1 (null) 1 dizzi
 2 1 2 fizzi
 2 1 3 gizzi
 3 2 4 kizzi
 3 3 6 pizzi
 3 3 7 tizzi
 4 4 5 mizzi

If recursive queries become complex, they also become very difficult to develop and debug. HyperSQL provides an
alternative to this with user-defined SQL functions which return tables. Functions can perform any complex, repetitive
task with better control, using loops, variables and, if necessary, recursion.

The query below computes the Fibonacci numbers up to 100 digits. The WHERE clause limits the iteration.

 WITH RECURSIVE Fibonacci(N1, F1, N2, F2) AS (
 VALUES(0, CAST(0 AS DECIMAL(100)), 1, CAST(1 AS DECIMAL(100))
 UNION
 SELECT N1 + 1, F1 + F2, N1 +2, F1 + 2 * F2
 FROM Fibonacci p
 WHERE N1 < 100
) SELECT * FROM Fibonacci

Query Expression

A query expression consists of an optional WITH clause and a query expression body. The optional WITH clause lists
one or more named ephemeral tables that can be referenced, just like the database tables in the query expression body.

<query expression> ::= [<with clause>] <query expression body>

A query expression body refers to a table formed by using UNION and other set operations. The query expression
body is evaluated from left to right and the INTERSECT operator has precedence over the UNION and EXCEPT
operators. A simplified BNF is given below:

<query expression body> ::= <query term> | <query expression body> UNION |
EXCEPT [ALL | DISTINCT] [<corresponding spec>] <query term>

<query term> ::= <query primary> | <query term> INTERSECT [ALL | DISTINCT]
[<corresponding spec>] <query term>

<query primary> ::= <simple table> | <left paren> <query expression body> [<order
by clause>] [<result offset clause>] [<fetch first clause>] <right paren>

<simple table> ::= <query specification> | <table value constructor> | <explicit
table> <explicit table> ::= TABLE <table or query name>

<corresponding spec> ::= CORRESPONDING [BY <left paren> <column name list>
<right paren>]

Data Access and Change

156

A <query term> and a <query primary> can be a SELECT statement, an <explicit table>, or a
<table value constructor>.

The CORRESPONDING clause is optional. If it is not specified, then the <query term> and the <query
primary> must have the same number of columns. If CORRESPONDING is specified, the two sides need not have
the same number of columns. If no column list is used with CORRESPONDING, then all the column names that are
common in the tables on two sides are used in the order in which they appear in the first table. If a columns list is used,
it allows you to select only some columns of the tables on the left and right side to create the new table. In the example
below the columns named u and v from the two SELECT statements are used to create the UNION table.

 SELECT * FROM atable UNION CORRESPONDING BY (u, v) SELECT * FROM anothertable

The type of each column of the query expression is determined by combining the types of the corresponding columns
from the two participating tables.

Ordering
When the rows of the result table have been formed, it is possible to specify the order in which they are returned to the
user. The ORDER BY clause is used to specify the columns used for ordering, and whether ascending or descending
ordering is used. It can also specify whether NULL values are returned first or last.

 SELECT x + y AS xysum, y + z AS yzsum FROM atable AS t (u, v, w, x, y, z) WHERE u + v = w ORDER
 BY xysum NULLS LAST, yzsum NULLS FIRST

The ORDER BY clause specifies one or more <value expressions>. The list of rows is sorted according to the
first <value expression>. When some rows are sorted equal then they are sorted according to the next <value
expression> and so on.

<order by clause> ::= ORDER BY <sort specification> [{ <comma> <sort
specification> }...]

<sort specification> ::= <value expression> [<collate clause>] [ASC | DESC]
[NULLS FIRST | NULLS LAST]

The defaults are ASC and NULLS FIRST. Two database properties SQL NULLS FIRST and SQL NULLS ORDER
can be modified to change the default behaviour.

A collation is used for columns of an ORDER BY expression that are of the type CHAR or VARCHAR. If a <collate
clause> is not specified then the collation of the column, or the default collation of the database is used.

The default collation for a database is ASCII, with lowercase letters sorted after all uppercase letters. The example
below shows the effect of collation on an ordered list.

 -- default collation collation for the database is ASCII
 SELECT id, lastname FROM customer ORDER BY lastname
 ID LASTNAME
 -- --------
 40 Clancy
 36 King
 35 White
 6 king

 -- a language collation is used, it treats king and King as adjacent entries
 SELECT id, lastname FROM customer ORDER BY lastname COLLATE "English"
 ID LASTNAME
 -- --------
 40 Clancy
 6 king
 36 King

Data Access and Change

157

 35 White

In the above example, if the LASTNAME column is itself defined in the table definition with COLLATE "English",
then the COLLATE clause is not necessary in the ORDER BY expression.

An ORDER BY operation can sometimes be optimised by the engine when it can use the same index for accessing the
table data and ordering. Optimisation can happen both with DESC + NULLS LAST and ASC + NULLS FIRST.

sort specification list

sort specification list

<sort specification list> ::= <value expression> [ASC | DESC] [NULLS FIRST |
NULLS LAST]

Specify a sort order. A sort operation is performed on the result of a <query expression> or <query
specification> and sorts the result according to one or more <value expression>. The <value
expression> is usually a single column of the result, but in some cases it can be a column of the <table
expression> that is not used in the select list. The default is ASC and NULLS FIRST.

Slicing
A different form of limiting the rows can be performed on the result table after it has been formed according to all the
other operations (selection, grouping, ordering etc.). This is specified by the FETCH ... ROWS and OFFSET clauses
of a SELECT statement. In this form, the specified OFFSET rows are removed from start of the table, then up to the
specified FETCH rows are kept and the rest of the rows are discarded.

<result offset clause> ::= OFFSET <offset row count> { ROW | ROWS }

<fetch first clause> ::= FETCH { FIRST | NEXT } [<fetch first row count>]
{ ROW | ROWS } ONLY [USING INDEX]

<limit clause> ::= LIMIT <fetch first row count> [USING INDEX]

A slicing operation takes the result set that has been already processed and ordered. It then discards the specified
number of rows from the start of the result set and returns the specified number of rows after the discarded rows. The
<offset row count> and <fetch first row count> can be constants, dynamic variables, routine parameters, or routine
variables. The type of the constants must be INTEGER.

 SELECT a, b FROM atable WHERE d < 5 ORDER BY absum OFFSET 3 FETCH 2 ROWS ONLY
 SELECT a, b FROM atable WHERE d < 5 ORDER BY absum OFFSET 3 LIMIT 2 /* alternative keyword */

When the FETCH keyword is used, the specified number of rows must be at least 1, otherwise an error is returned.
This behaviour is consistent with the SQL Standard. When the LIMIT keyword is used, the specified number of rows
can be zero, which means return all rows (no LIMIT). In MySQL and PostgreSQL syntax modes, zero limit means
no rows (empty result).

If there is an index on all the columns specified in the ORDER BY clause, it is normally used for slicing. In some
queries, an index on another column may take precedence because it is used to process the WHERE condition. It is
possible to add USING INDEX to the end of the slicing clause to force the use of the index for ordering and slicing,
instead of the index for the WHERE condition.

Indexes Used in SELECT and DML Statements
A query expression, for example a SELECT statement, uses indexes for efficient data retrieval. The EXPLAIN PLAN
statement lists the indexes used, together with other useful information about the query. EXPLAIN PLAN can also be
used for data manipulation statements such as UPDATE.

Data Access and Change

158

EXPLAIN PLAN

explain plan

<explain plan> ::= EXPLAIN PLAN FOR <query expression>

For example, EXPLAIN PLAN FOR SELECT * FROM REVENUE WHERE COUNTRY = 'UK' .

Data Change Statements

Delete Statement

DELETE FROM

delete statement: searched

<delete statement: searched> ::= DELETE FROM <target table> [[AS] <correlation
name>] [WHERE <search condition>][LIMIT <fetch first row count>]

Delete rows of a table. The search condition is a <boolean value expression> that is evaluated for each row
of the table. If the condition is true, the row is deleted. If the condition is not specified, all the rows of the table are
deleted. In fact, an implicit SELECT is performed in the form of SELECT * FROM <target table> [WHERE
<search condition>] and the selected rows are deleted. When used in JDBC, the number of rows returned by
the implicit SELECT is returned as the update count.

If there are FOREIGN KEY constraints on other tables that reference the subject table, and the FOREIGN KEY
constraints have referential actions, then rows from those other tables that reference the deleted rows are either deleted,
or updated, according to the specified referential actions.

The LIMIT clause, or alternatively the ROWNUM() function in the WHERE clause, can be used to limit the number
of rows that are deleted. This is useful when a very large number of rows needs to be deleted. In this situation, you
can perform the operation is chunks and commit after each chunk to reduce memory usage and the total time of the
operation.

In the second example below the rows that have the maximum value for column A are deleted;

 DELETE FROM T WHERE C > 5
 DELETE FROM T AS TT WHERE TT.A = (SELECT MAX(A) FROM T)

Truncate Statement

TRUNCATE TABLE

truncate table statement

<truncate table statement> ::= TRUNCATE TABLE <target table> [<identity column
restart option>] [<truncate options>]

<identity column restart option> ::= CONTINUE IDENTITY | RESTART IDENTITY

<truncate options> ::= AND COMMIT [NO CHECK]

<truncate table versioning statement> ::= TRUNCATE TABLE <target table>
VERSIONING TO { TIMESTAMP'YYYY-MM-DD HH:MM:SS' | CURRENT_TIMESTAMP }

Data Access and Change

159

Delete all rows of a table without firing its triggers. This statement can only be used on base tables (not views). If
the table is referenced in a FOREIGN KEY constraint defined on another table, the statement causes an exception.
Triggers defined on the table are not executed with this statement. The default for <identity column restart
option> is CONTINUE IDENTITY. This means no change to the IDENTITY sequence of the table. If RESTART
IDENTITY is specified, then the sequence is reset to its start value.

TRUNCATE is faster than ordinary DELETE. The TRUNCATE statement is an SQL Standard data change statement;
therefore it is performed under transaction control and can be rolled back if the connection is not in the auto-commit
mode.

HyperSQL also supports the optional AND COMMIT and NO CHECK options. If AND COMMIT is used, then
the transaction is committed with the execution of the TRUNCATE statement. The action cannot be rolled back. If
the additional NO CHECK option is also specified, then the TRUNCATE statement is executed even if the table is
referenced in a FOREIGN KEY constraint defined on another, non-empty table. This form of TRUNCATE is faster
than the default form and does not use much memory.

The <truncate table versioning statement> is for removing old history rows from a system-versioned
table. All history rows that expired before the given timestamp are removed. No current row is removed.

TRUNCATE SCHEMA

truncate schema statement

<truncate schema statement> ::= TRUNCATE SCHEMA <target schema> [<identity
column restart option>] AND COMMIT [NO CHECK]

Performs the equivalent of a TRUNCATE TABLE ... AND COMMIT on all the table in the schema. If the additional
NO CHECK option is also specified, then the TRUNCATE statement is executed even if any of the tables in the
schema is referenced in a FOREIGN KEY constraint defined on a non-empty table in a different schema.

If RESTART IDENTITY is specified, all table IDENTITY sequences and all SEQUENCE objects in the schema are
reset to their start values.

Use of this statement requires schema ownership or administrative privileges.

Insert Statement

INSERT INTO

insert statement

<insert statement> ::= INSERT INTO <target table> [[AS] <correlation name>]
<insert columns and source>

<insert columns and source> ::= <from subquery> | <from constructor> | <from
default>

<from subquery> ::= [<left paren> <insert column list> <right paren>]
[<override clause>] <query expression>

<from constructor> ::= [<left paren> <insert column list> <right paren>]
[<override clause>] <contextually typed table value constructor>

<override clause> ::= OVERRIDING USER VALUE | OVERRIDING SYSTEM VALUE

<from default> ::= DEFAULT VALUES

Data Access and Change

160

<insert column list> ::= <column name list>

Insert new rows in a table. An INSERT statement inserts one or more rows into the table.

The special form, INSERT INTO <target table> DEFAULT VALUES can be used with tables which have
a default value for each column.

With the other forms of INSERT, the optional (<insert column list>) specifies to which columns of the
table the new values are assigned.

In one form, the inserted values are from a <query expression> and all the rows that are returned by the <query
expression> are inserted into the table. If the <query expression> returns no rows, nothing is inserted.

In the other form, a comma separated list of values called <contextually typed table value
constructor> is used to insert one or more rows into the table. This list is contextually typed, because the keywords
NULL and DEFAULT can be used for the values that are assigned to each column of the table. In this form, the
keyword DEFAULT means the default value of the column and can be used only if the target column has a default
value or is an IDENTITY or GENERATED column of the table.

The <override clause> must be used when a value is explicitly assigned to a column that has been defined as
GENERATED ALWAYS AS IDENTITY. The OVERRIDING SYSTEM VALUE clause must be used to override the
sequence value with the user-supplied values. For columns defined as GENERATED BY DEFAULT AS IDENTITY,
there is no need to use OVERRIDING when the user provides values to be used for the insert. The OVERRIDING
USER VALUE clause can be used with all types of GENERATED columns and means the values provided by the
user are simply ignored and new values generated by the system are used instead. Two examples of table definition
are given below.

 CREATE TABLE t1 (id INTEGER GENERATED ALWAYS AS IDENTITY(START WITH 100), name VARCHAR(20)
 PRIMARY KEY)
 CREATE TABLE t2 (id INTEGER GENERATED BY DEFAULT AS IDENTITY(START WITH 1) PRIMARY KEY, name
 VARCHAR(20))

In both examples below, the value inserted for the id column is 14. In the first example, it is necessary to use
OVERRIDING SYSTEM VALUE when inserting into the id column of table t1 because the column has been defined
as GENERATED ALWAYS. In the second example, no OVERRIDING clause is required for the insert into table t2
as its id column is defined as GENERATED BY DEFAULT. In both examples, if there is an existing row with that
value as primary key, a constraint violation exception is thrown.

 INSERT INTO t1 (id, name) OVERRIDING SYSTEM VALUE VALUES (14, 'Test Value')
 INSERT INTO t2 (id, name) VALUES (14, 'Test Value')

In the examples below, OVERRIDING USER VALUE is used to let the system generate values for the id column.
The generated values override the value 14 in the first example, and the existing values for the id column in the table
in the second example.

 INSERT INTO t1 (id, name) OVERRIDING USER VALUE VALUES (14, 'Another Test Value')
 INSERT INTO t1 (id, name) OVERRIDING USER VALUE (SELECT * FROM t1)

An array can be inserted into a column of the array type by using literals, by specifying a parameter in a prepared
statement, or by an existing array returned by a query expression. The last example below inserts an array.

The rows that are inserted into the table are checked against all the constraints that have been declared on the table.
The whole INSERT operation fails if any row fails to inserted due to constraint violation. Examples:

 CREATE TABLE T (A INTEGER GENERATED BY DEFAULT AS IDENTITY, B INTEGER DEFAULT 2)
 INSERT INTO T DEFAULT VALUES /* all columns of T have DEFAULT clauses */
 INSERT INTO T (SELECT * FROM Z) /* table Z has the same columns as table T */

Data Access and Change

161

 INSERT INTO T (A,B) VALUES ((1,2),(3,NULL), (DEFAULT,6)) /* three rows are inserted into table T
 */
 ALTER TABLE T ADD COLUMN D VARCHAR(10) ARRAY /* an ARRAY column is added */
 INSERT INTO T VALUES DEFAULT, 3, ARRAY['hot','cold']

If the table contains an IDENTITY column, the value for this column for the last row inserted by a session can be
retrieved using a call to the IDENTITY() function. This call returns the last value inserted by the calling session. When
the insert statement is executed with a JDBC Statement or PreparedStatement method, the getGeneratedKeys()
method of Statement can be used to retrieve not only the IDENTITY column, but also any GENERATED computed
column, or any other column. The getGeneratedKeys() returns a ResultSet with one or more columns. This
contains one row per inserted row, and can therefore return all the generated columns for a multi-row insert.

There are three methods of specifying which generated keys should be returned. The first method does not specify
the columns of the table. With this method, the returned ResultSet will have a column for each column of the table
that is defined as GENERATED ... AS IDENTITY or GENERATED ... AS (<expression>). The two other methods
require the user to specify which columns should be returned, either by column indexes, or by column names. With
these methods, there is no restriction on which columns of the inserted values to be returned. This is especially useful
when some columns have a default clause which is a function, or when there are BEFORE triggers on the table that
may provide the inserted value for some of the columns.

In MySQL syntax compatibility mode, HyperSQL supports INSERT IGNORE, REPLACE and ON DUPLICATE
KEY UPDATE variations of the INSERT statement.

Update Statement
UPDATE

update statement: searched

<update statement: searched> ::= UPDATE <target table> [[AS] <correlation
name>] SET <set clause list> [WHERE <search condition>][LIMIT <fetch first
row count>]

Update rows of a table. An UPDATE statement selects rows from the <target table> using an implicit SELECT
statement formed in the following manner:

SELECT * FROM <target table> [[AS] <correlation name>] [WHERE <search
condition>]

Then it applies the SET <set clause list> expression to each selected row.

If the implicit SELECT returns no rows, no update takes place. When used in JDBC, the number of rows returned by
the implicit SELECT is returned as the update count.

If there are FOREIGN KEY constraints on other tables that reference the subject table, and the FOREIGN KEY
constraints have referential actions, then rows from those other tables that reference the updated rows are updated,
according to the specified referential actions.

The rows that are updated are checked against all the constraints that have been declared on the table. The whole
UPDATE operation fails if any row violates any constraint.

The LIMIT clause, or alternatively the ROWNUM() function in the WHERE clause, can be used to limit the number
of rows that are updated. This is useful when a very large number of rows needs to be updated. In this situation, you
can perform the operation is chunks and commit after each chunk to reduce memory usage and the total time of the
operation.

set clause list

Data Access and Change

162

set clause list

<set clause list> ::= <set clause> [{ <comma> <set clause> }...]

<set clause> ::= <multiple column assignment> | <set target> <equals operator>
<update source>

<multiple column assignment> ::= <set target list> <equals operator> <assigned
row>

<set target list> ::= <left paren> <set target> [{ <comma> <set target> }...]
<right paren>

<assigned row> ::= <contextually typed row value expression>

<set target> ::= <column name>

<update source> ::= <value expression> | <contextually typed value specification>

Specify a list of assignments. This is used in UPDATE, MERGE and SET statements to assign values to a scalar or
row target.

Apart from setting a whole target to a value, a SET statement can set individual elements of an array to new values.
The last example below shows this form of assignment to the array in the column named B.

In the examples given below, UPDATE statements with single and multiple assignments are shown. Note in the third
example, a SELECT statement is used to provide the update values for columns A and C, while the update value for
column B is given separately. The SELECT statement must return exactly one row . In this example the SELECT
statement refers to the existing value for column C in its search condition.

 UPDATE T SET A = 5 WHERE ...
 UPDATE T SET (A, B) = (1, NULL) WHERE ...
 UPDATE T SET (A, C) = (SELECT X, Y FROM U WHERE Z = C), B = 10 WHERE ...
 UPDATE T SET A = 3, B[3] = 'warm'

Merge Statement

MERGE INTO

merge statement

<merge statement> ::= MERGE INTO <target table> [[AS] <merge correlation
name>] USING <table reference> ON <search condition> <merge operation
specification>

<merge correlation name> ::= <correlation name>

<merge operation specification> ::= <merge when clause>...

<merge when clause> ::= <merge when matched clause> | <merge when not matched
clause>

<merge when matched clause> ::= WHEN MATCHED [AND <search condition>] THEN
<merge update or delete specification>

<merge when not matched clause> ::= WHEN NOT MATCHED [AND <search condition>]
THEN <merge insert specification>

Data Access and Change

163

<merge update specification> ::= UPDATE SET <set clause list>

<merge delete specification> ::= DELETE

<merge insert specification> ::= INSERT [<left paren> <insert column list>
<right paren>] [<override clause>] VALUES <merge insert value list>

<merge insert value list> ::= <left paren> <merge insert value element>
[{ <comma> <merge insert value element> }...] <right paren>

<merge insert value element> ::= <value expression> | <contextually typed value
specification>

Update rows, delete rows or insert new rows into the <target table>. The MERGE statement uses a second
table, specified by <table reference>, to determine the rows to be updated or inserted. It is possible to use the
statement only to update rows, to delete rows or to insert rows, but usually both update and insert are specified.

The <search condition> matches each row of the <table reference> with each row of the <target
table>. If the two rows match then the UPDATE clause is used to update the matching row of the target table. Those
rows of <table reference> that have no matching rows are then used to insert new rows into the <target
table>. Therefore, a MERGE statement can update or delete between 0 and all the rows of the <target table>
and can insert between 0 and the number of the rows in <table reference> into the <target table>. If
any row in the <target table> matches more than one row in <table reference> a cardinality error is
raised. On the other hand, several rows in the <target table> can match a single row in <table reference>
without any error. The constraints and referential actions specified on the database tables are enforced the same way
as for an update, a delete and an insert statement.

The optional <search condition> in each WHEN clause can be used to filter (reduce) the rows for the particular
action.

HyperSQL allows only one UPDATE, INSERT or DELETE operation in a MERGE statement. If both UPDATE
and DELETE are used, the operations are performed in the order they appear in the MERGE statement. If the search
conditions of both operations apply to the same row, only the first operation is performed.

The MERGE statement can be used with only the WHEN NOT MATCHED clause as a conditional INSERT statement
that inserts a row if no existing rows match a condition.

In the first example below, the table originally contains two rows for different furniture. The <table reference>
is the (VALUES(1, 'conference table'), (14, 'sofa'), (5, 'coffee table')) expression,
which evaluates to a table with 3 rows. When the x value for a row matches an existing row, then the existing row is
updated. When the x value does not match, the row is inserted. Therefore one row of table t is updated from 'dining
table' to 'conference table', and two rows are inserted into table t. The second example uses a SELECT statement as
the source of the values for the MERGE.

In the third example, a new row in inserted into the table only when the primary key for the new row does not exist. This
example uses parameters and should be executed as a JDBC PreparedStatement. The parameter is cast as INTEGER
because the MERGE statement does not determine the types of values in the USING clause.

In the fourth example, existing rows that match are deleted.

 CREATE TABLE t (id INT PRIMARY KEY, description VARCHAR(100))
 INSERT INTO t VALUES (1, 'dining table'), (2, 'deck chair')

 MERGE INTO t USING (VALUES(1, 'conference table'), (14, 'sofa'), (5, 'coffee table'))
 AS vals(x,y) ON t.id = vals.x
 WHEN MATCHED THEN UPDATE SET t.description = vals.y
 WHEN NOT MATCHED THEN INSERT VALUES vals.x, vals.y

Data Access and Change

164

 MERGE INTO t USING (SELECT * FROM tt WHERE acol = 2) AS vals(x,y) ON t.id = vals.x
 WHEN MATCHED THEN UPDATE SET t.description = vals.y
 WHEN NOT MATCHED THEN INSERT VALUES vals.x, vals.y

 MERGE INTO t USING (VALUES(CAST(? AS INT))) AS vals(x) ON t.id = vals.x
 WHEN NOT MATCHED THEN INSERT VALUES vals.x, ?

 MERGE INTO t USING (SELECT * FROM tt WHERE acol = 2) AS vals(x,y) ON t.id = vals.x
 WHEN MATCHED THEN DELETE
 WHEN NOT MATCHED THEN INSERT VALUES vals.x, vals.y

Diagnostics and State
HyperSQL supports some SQL statements, expressions, functions, and Java methods that report on the most recently
executed statement.

The IDENTITY() function returns the last inserted identity value for the current session.

The GET DIAGNOSTICS statement is supported to a limited extent. The built-in function DIAGNOSTICS() is an
alternative. These are normally used in SQL/PSM routines to check the result of the last data update operation.

GET DIAGNOSTICS

get diagnostics statement

<get diagnostics statement> ::= GET DIAGNOSTICS <simple target value
specification> = ROW_COUNT

The <simple target value specification> is a session variable, or a routine variable or OUT parameter.

The keyword ROW_COUNT specifies the row count returned by the last executed statement. For INSERT, UPDATE,
DELETE and MERGE statements, this is the number of rows affected by the statement. This is the same value as
returned by JDBC executeUpdate() methods. For all other statements, zero is returned.

The value of ROW_COUNT is stored in the specified target.

This statement is often used in CREATE PROCEDURE statements.

In future versions, more options will be supported for diagnostics values.

165

Chapter 6. Sessions and Transactions

Fred Toussi, The HSQL Development Group
$Revision: 6621 $

Copyright 2010-2022 Fred Toussi. Permission is granted to distribute this document without any alteration
under the terms of the HSQLDB license. Additional permission is granted to the HSQL Development Group
to distribute this document with or without alterations under the terms of the HSQLDB license.
2022-10-20

Overview
All SQL statements are executed in sessions. When a connection is established to the database, a session is started.
The authorization of the session is the name of the user that started the session. A session has several properties. These
properties are set by default at the start according to database settings.

SQL Statements are generally transactional statements. When a transactional statement is executed, it starts a
transaction if no transaction is in progress. If SQL Data (data stored in tables) is modified during a transaction, the
change can be undone with a ROLLBACK statement. When a COMMIT or ROLLBACK statement is executed, the
transaction is ended. Each SQL statement works atomically: it either succeeds or fails without changing any data. If
a single statement fails, an error is raised but the transaction is not normally terminated. However, some failures are
caused by execution of statements that are in conflict with statements executed in other concurrent sessions. Such
failures result in an implicit ROLLBACK, in addition to the exception that is raised.

Schema definition and manipulation statements are also transactional according to the SQL Standard. HyperSQL
performs automatic commits before and after the execution of such transactions. Therefore, schema-related statements
cannot be rolled back. This is likely to change in future versions.

Some statements are not transactional. Most of these statements are used to change the properties of the session. These
statements begin with the SET keyword.

If the AUTOCOMMIT property of a session is TRUE, then each transactional statement is followed by an implicit
COMMIT.

The default isolation level for a session is READ COMMITTED. This can be changed using the JDBC
java.sql.Connection object and its setTransactionIsolation(int level) method. The session
can be put in read-only mode using the setReadOnly(boolean readOnly) method. Both methods can be
invoked only after a commit or a rollback, but not during a transaction.

The isolation level and / or the readonly mode of a transaction can also be modified using an SQL statement. You can
use the statement to change only the isolation mode, only the read-only mode, or both at the same time. This statement
can be issued only before a transaction starts or after a commit or rollback.

SET TRANSACTION <transaction characteristic> [<comma> <transaction
characteristic>]

This statement is described in detail later in this chapter.

Session Attributes and Variables
Each session has several system attributes. A session can also have user-defined session variables.

Sessions and Transactions

166

Session Attributes
The system attributes reflect the current mode of operation for the session. These attributes can be accessed with
function calls and can be referenced in queries. For example, they can be returned using the VALUES <attribute
function>, ... statement.

The named attributes such as CURRENT_USER, CURRENT_SCHEMA, etc. are SQL Standard functions. Other
attributes of the session, such as auto-commit or read-only modes can be read using other built-in functions. All these
functions are listed in the Built In Functions chapter.

Each session has a time zone, which is the time zone of the JVM in which the connection is made and can be different
from the time zone of a server database. Different client / server sessions can therefore have different time zones and
display time-zone-sensitive information differently. See the description of the SET TIME ZONE statement below for
more detail.

Session Variables
Session variables are user-defined variables created the same way as the variables for stored procedures and functions.
Currently, these variables cannot be used in general SQL statements. They can be assigned to IN, INOUT and OUT
parameters of stored procedures. This allows calling stored procedures which have INOUT or OUT arguments and
is useful for development and debugging. See the example in the SQL-Invoked Routines chapter, under Formal
Parameters.

Example 6.1. User-defined Session Variables

 DECLARE counter INTEGER DEFAULT 3;
 DECLARE result VARCHAR(20) DEFAULT NULL;
 SET counter=15;
 CALL myroutine(counter, result)

Session Tables
With necessary access privileges, sessions can access all table, including GLOBAL TEMPORARY tables, that are
defined in schemas. Although GLOBAL TEMPORARY tables have a single name and definition which applies to all
sessions that use them, the contents of the tables are different for each session. The contents are cleared either at the
end of each transaction or when the session is closed.

Session tables are different because their definition is visible only within the session that defines a table. The definition
is dropped when the session is closed. Session tables do not belong to schemas.

<temporary table declaration> ::= DECLARE LOCAL TEMPORARY TABLE <table name>
<table element list> [ON COMMIT { PRESERVE | DELETE } ROWS]

The syntax for declaration is based on the SQL Standard. A session table cannot have FOREIGN KEY constraints,
but it can have PRIMARY KEY, UNIQUE or CHECK constraints. A session table definition cannot be modified by
adding or removing columns, indexes, etc.

It is possible to refer to a session table using its name, which takes precedence over a schema table of the same name.
To distinguish a session table from schema tables, the pseudo schema name, SESSION can be used. The alternative
name, MODULE is deprecated and does not work in version 2.5.1 but can be used in version 2.6 and later for backward
compatibility. An example is given below:

Example 6.2. User-defined Temporary Session Tables

 DECLARE LOCAL TEMPORARY TABLE buffer (id INTEGER PRIMARY KEY, textdata VARCHAR(100)) ON COMMIT
 PRESERVE ROWS

Sessions and Transactions

167

 INSERT INTO session.buffer SELECT id, firstname || ' ' || lastname FROM customers
 -- do some more work
 DROP TABLE session.buffer
 -- alternative schema name, MODULE can be used in version 2.7 but it is deprecated
 DROP TABLE module.buffer

Session tables can be created inside a transaction. Automatic indexes are created and used on session tables when
necessary for a query or other statement. By default, session table data is held in memory. This can be changed with
the SET SESSION RESULT MEMORY ROWS statement.

Transactions and Concurrency Control
HyperSQL 2 has been fully redesigned to support different transaction isolation models. It no longer supports the old
1.8.x model with "dirty read". Although it is perfectly possible to add an implementation of the transaction manager
that supports the legacy model, we thought this is no longer necessary. The new system allows you to select the
transaction isolation model while the engine is running. It also allows you to choose different isolation levels for
different simultaneous sessions.

HyperSQL 2 supports three concurrency control models: two-phase-locking (2PL), which is the default, multiversion
concurrency control (MVCC) and a hybrid model, which is 2PL plus multiversion rows (MVLOCKS). Within
each model, it supports some of the 4 standard levels of transaction isolation: READ UNCOMMITTED, READ
COMMITTED, REPEATABLE READ and SERIALIZABLE. The concurrency control model is a strategy that
governs all the sessions and is set for the database, as opposed for individual sessions. The isolation level is a property
of each SQL session, so different sessions can have different isolation levels. In the new implementation, all isolation
levels avoid the "dirty read" phenomenon and do not read uncommitted changes made to rows by other transactions.

HyperSQL is fully multi-threaded in all transaction models. Sessions continue to work simultaneously and can fully
utilise multi-core processors.

Each active session has a separate thread. When the database is run as a server, HyperSQL allocates and manages
the threads. In in-process databases, sessions are accessed indirectly via JDBC connections. Each connection must be
accessed via the same thread in the user application for the duration of a transaction. In in-process databases, if the
user application interrupts the thread that is executing SQL statements, the interrupt is cleared by HyperSQL if it is
caught. You can change this with SET DATABASE TRANSACTION ROLLBACK ON INTERRUPT TRUE to force
the transaction to roll back on interrupt and keep the interrupted state of the thread.

The concurrency control model of a live database can be changed. The SET DATABASE TRANSACTION CONTROL
{ LOCKS | MVLOCKS | MVCC } can be used by a user with the DBA role.

Two Phase Locking
The two-phase locking model is the default mode. It is referred to by the keyword, LOCKS. In the 2PL model, each
table that is read by a transaction is locked with a shared lock (read lock), and each table that is written to is locked with
an exclusive lock (write lock). If two sessions read and modify different tables then both go through simultaneously.
If one session tries to lock a table that has been locked by the other, if both locks are shared locks, it will go ahead. If
either of the locks is an exclusive lock, the engine will put the session in wait until the other session commits or rolls
back its transaction. The engine will throw an error if the action would result in deadlock.

HyperSQL also supports explicit locking of a group of tables for the duration of the current transaction. Use of this
command blocks access to the locked tables by other sessions and ensures the current session can complete the intended
reads and writes on the locked tables.

If a table is read-only, it will not be locked by any transaction.

The READ UNCOMMITTED isolation level can be used in 2PL modes for read-only operations. It is the same as
READ COMMITTED plus read only.

Sessions and Transactions

168

The READ COMMITTED isolation level is the default. It keeps write locks on tables until commit, but releases the
read locks after each operation.

The REPEATABLE READ level is upgraded to SERIALIZABLE. These levels keep both read and write locks on
tables until commit.

It is possible to perform some critical operations at the SERIALIZABLE level, while the rest of the operations are
performed at the READ COMMITTED level.

Note: two phase locking refers to two periods in the life of a transaction. In the first period, locks are acquired, in the
second period locks are released. No new lock is acquired after releasing a lock.

Two Phase Locking with Snapshot Isolation
This model is referred to as MVLOCKS. It works the same way as normal 2PL as far as updates are concerned.

SNAPSHOT ISOLATION is a multiversion concurrency strategy which uses the snapshot of the whole database at the
time of the start of the transaction. In this model, read-only transactions use SNAPSHOT ISOLATION. While other
sessions are busy changing the database, the read-only session sees a consistent view of the database and can access
all the tables even when they are locked by other sessions for updates.

There are many applications for this mode of operation. In heavily updated data sets, this mode allows uninterrupted
read access to the data.

Lock Contention in 2PL
When multiple connections are used to access the database, the transaction manager controls their activities. When
each transaction performs only reads or writes on a single table, there is no contention. Each transaction waits until it
can obtain a lock then performs the operation and commits. Contentions occur when transactions perform reads and
writes on more than one table, or perform a read, followed by a write, on the same table.

For example, when sessions are working at the SERIALIZABLE level, when multiple sessions first read from a table
in order to check if a row exists, then insert a row into the same table when it doesn't exist, there will be regular
contention. Transaction A reads from the table, then does Transaction B. Now if either Transaction A or B attempts
to insert a row, it will have to be terminated as the other transaction holds a shared lock on the table. If instead of
two operations, a single MERGE statement is used to perform the read and write, no contention occurs because both
locks are obtained at the same time.

Alternatively, there is the option of obtaining the necessary locks with an explicit LOCK TABLE statement. This
statement should be executed before other statements and should include the names of all the tables and the locks
needed. After this statement, all the other statements in the transaction can be executed and the transaction committed.
The commit will remove all the locks.

HyperSQL detects deadlocks before attempting to execute a statement. When a lock is released after the completion
of the statement, the first transaction that is waiting for the lock is allowed to continue.

HyperSQL is fully multi threaded. It therefore allows different transactions to execute concurrently so long as they
are not waiting to lock the same table for write.

Locks in SQL Routines and Triggers
In both LOCKS and MVLOCKS models, SQL routines (functions and procedures) and triggers obtain all the read
and write locks at the beginning of the routine execution. SQL statements contained in the routine or trigger are all
executed without deadlock as all the locks have already been obtained. At the end of execution of the routine or trigger,
read locks are released if the session isolation level is READ COMMITTED.

Sessions and Transactions

169

MVCC
In the MVCC model, there are no shared, read locks. Exclusive locks are used on individual rows, but their use
is different. Transactions can read and modify the same table simultaneously, generally without waiting for other
transactions. The SQL Standard isolation levels are used by the user's application, but these isolation levels are
translated to the MVCC isolation levels READ CONSISTENCY or SNAPSHOT ISOLATION.

When transactions are running at READ COMMITTED level, no conflict will normally occur. If a transaction that
runs at this level wants to modify a row that has been modified by another uncommitted transaction, then the engine
puts the transaction in wait, until the other transaction has committed. The transaction then continues automatically.
This isolation level is called READ CONSISTENCY.

Deadlock is completely avoided by the engine. The database setting, SET DATABASE TRANSACTION
ROLLBACK ON CONFLICT, determines what happens in case of deadlock. In theory, conflict (deadlock) is possible
if each transaction is waiting for a different row modified by the other transaction. In this case, one of the transactions
is immediately terminated by rolling back all the previous statements in the transaction in order to allow the other
transaction to continue. If the setting has been changed to FALSE with the <set database transaction
rollback on conflict statement>, the session that avoided executing the deadlock-causing statement
returns an error, but without rolling back the previous statements in the current transaction. This session should perform
an alternative statement to continue and commit or roll back the transaction. Once the session has committed or rolled
back, the other session can continue. This allows maximum flexibility and compatibility with other database engines
which do not roll back the transaction upon deadlock.

When transactions are running in REPEATABLE READ or SERIALIZABLE isolation levels, conflict is more likely
to happen. There is no difference in operation between these two isolation levels. This isolation level is called
SNAPSHOT ISOLATION.

In this mode, when the duration of two transactions overlaps, if one of the transactions has modified a row and the
second transaction wants to modify the same row, the action of the second transaction will fail. This happens even
if the first transaction has already committed. The engine will invalidate the second transaction and roll back all its
changes. If the setting is changed to false with the <set database transaction rollback on conflict
statement>, then the second transaction will just return an error without rolling back. The application must perform
an alternative statement to continue or roll back the transaction.

In the MVCC model, READ UNCOMMITTED is promoted to READ COMMITTED, as the new architecture is based
on multi-version rows for uncommitted data and more than one version may exist for some rows.

With MVCC, when a transaction only reads data, then it will go ahead and complete regardless of what other
transactions may do. This does not depend on the transaction being read-only or the isolation modes.

Choosing the Transaction Model
The SQL Standard defines the isolation levels as modes of operation that avoid the three unwanted phenomena, "dirty
read", "fuzzy read" and "phantom row" during a transaction. The "dirty read" phenomenon occurs when a session can
read changes to a row made by another uncommitted session. The "fuzzy read" phenomenon occurs when a session
reads a row and the row is modified by another session which commits, then the first session reads the row again.
The "phantom row" phenomenon occurs when a session performs an operation that affects several rows, for example,
counts the rows or modifies them using a search condition, then another session adds one or more rows that fulfil
the same search condition and commits, then the first session performs an operation that relies on the results of its
last operation. According to the Standard, the SERIALIZABLE isolation level avoids all three phenomena and also
ensures that all the changes performed during a transaction can be considered as a series of uninterrupted changes to
the database without any other transaction changing the database at all for the duration of these actions. The changes
made by other transactions are considered to occur before the SERIALIZABLE transaction starts, or after it ends. The
READ COMMITTED level avoids "dirty read" only, while the REPEATABLE READ level avoids "dirty read" and
"fuzzy read", but not "phantom row".

Sessions and Transactions

170

The Standard allows the engine to return a higher isolation level than requested by the application. HyperSQL promotes
a READ UNCOMMITTED request to READ COMMITTED and promotes a REPEATABLE READ request to
SERIALIZABLE.

The MVCC model is not covered directly by the Standard. Research has established that the READ CONSISTENCY
level fulfils the requirements of (and is stronger than) the READ COMMITTED level. The SNAPSHOT ISOLATION
level is stronger than the READ CONSISTENCY level. It avoids the three anomalies defined by the Standard, and
is therefore stronger than the REPEATABLE READ level as defined by the Standard. When operating with the
MVCC model, HyperSQL treats a REPEATABLE READ or SERIALIZABLE setting for a transaction as SNAPSHOT
ISOLATION.

All modes can be used with as many simultaneous connections as required. The default 2PL model is fine for
applications with a single connection, or applications that do not access the same tables heavily for writes. With
multiple simultaneous connections, MVCC can be used for most applications. Both READ CONSISTENCY and
SNAPSHOT ISOLATION levels are stronger than the corresponding READ COMMITTED level in the 2PL mode.
Some applications require SERIALIZABLE transactions for at least some of their operations. For these applications,
one of the 2PL modes can be used. It is possible to switch the concurrency model while the database is operational.
Therefore, the model can be changed for the duration of some special operations, such as synchronization with another
data source or performing bulk changes to table contents.

All concurrency models are very fast in operation. When data change operations are mainly on the same tables, the
MVCC model may be faster, especially with multi-core processors.

Schema and Database Change
There are a few SQL statements that must access a consistent state of the database during their executions. These
statements, which include CHECKPOINT and BACKUP, put an exclusive lock on all the tables of the database when
they start.

Some schema manipulation statements put an exclusive lock on one or more tables. For example, changing the columns
of a table locks the table exclusively.

In the MVCC model, all statements that need an exclusive lock on one or more tables, put an exclusive lock on the
database catalog until they complete.

The effect of these exclusive locks is similar to the execution of data manipulation statements with write locks. The
session that is about to execute the schema change statement waits until no other session is holding a lock on any of
the objects. At this point it starts its operation and locks the objects to prevents any other session from accessing the
locked objects. As soon as the operation is complete, the locks are all removed.

Simultaneous Access to Tables
It was mentioned that there is no limit on the number of sessions that can access the tables and all sessions work
simultaneously in multi-threaded execution. However, there are internal resources that are shared. Simultaneous access
to these resources can reduce the overall efficiency of the system. MEMORY and TEXT tables do not share resources
and do not block multi-threaded access. With CACHED tables, each row change operation blocks the file and its
cache momentarily until the operation is finished. This is done separately for each row, therefore a multi-row INSERT,
UPDATE, or DELETE statement will allow other sessions to access the file during its execution. With CACHED
tables, SELECT operations do not block each other, but selecting from different tables and different parts of a large
table causes the row cache to be updated frequently and will reduce overall performance.

The new access pattern is the opposite of the access pattern of version 1.8.x. In the old version, even when 20 sessions
are actively reading and writing, only a single session at a time performs an SQL statement completely, before the next
session is allowed access. In the new version, while a session is performing a SELECT statement and reading rows
of a CACHED table to build a result set, another session may perform an UPDATE statement that reads and writes

Sessions and Transactions

171

rows of the same table. The two operations are performed without any conflict, but the row cache is updated more
frequently than when one operation is performed after the other operation has finished.

Viewing Sessions
As HyperSQL is multithreaded, you can view the current sessions and their state from any admin session. The
INFORMATION_SCHEMA.SYSTEM_SESSIONS table contains the list of open sessions, their unique ids and the
statement currently executed or waiting to be executed by each session. For each session, it displays the list of sessions
that are waiting for it to commit, or the session that this session is waiting for.

Session and Transaction Control Statements
ALTER SESSION

alter session statement

<alter session statement> ::= ALTER SESSION <numeric literal> { CLOSE | RELEASE
| END STATEMENT}

The <alter session statement> is used by an administrator to close another session or to rollback the
transaction in another session. This statement is different from the other statements discussed in this chapter as it is
not used for changing the settings of the current session. When END STATEMENT is used, the current statement that
is waiting to run or is being executed is aborted. When RELEASE is used, the current transaction is terminated with
a rollback. The session remains open. CLOSE may be used after RELEASE has completed.

The session ID is used as a <numeric literal> in this statement. The administrator can use the
INFORMATION_SCHEMA.SYSTEM_SESSIONS table to find the session IDs of other sessions.

<alter current session statement> ::= ALTER SESSION RESET { ALL | RESULT SETS
| TABLE DATA }

The <alter current session statement> is used to clear and reset different states of the current session.
When ALL is specified, the current transaction is rolled back, the session settings such as time zone, current schema
etc. are restored to their original state at the time the session was opened and all open result sets are closed and
temporary tables cleared. When RESULT SETS is specified, all currently open result sets are closed and the resources
are released. When TABLE DATA is specified, the data in all temporary tables is cleared.

SET AUTOCOMMIT

set autocommit command

<set autocommit statement> ::= SET AUTOCOMMIT { TRUE | FALSE }

When an SQL session is started by creating a JDBC connection, it is in AUTOCOMMIT mode. In this mode, after each
SQL statement a COMMIT is performed automatically. This statement changes the mode. It is equivalent to using the
setAutoCommit(boolean autoCommit) method of the JDBC Connection object.

START TRANSACTION

start transaction statement

<start transaction statement> ::= START TRANSACTION [<transaction
characteristics>]

Start an SQL transaction and set its characteristics. All transactional SQL statements start a transaction automatically,
therefore using this statement is not necessary. If the statement is called in the middle of a transaction, an exception
is thrown.

Sessions and Transactions

172

SET TRANSACTION

set next transaction characteristics

<set transaction statement> ::= SET [LOCAL] TRANSACTION <transaction
characteristics>

Set the characteristics of the next transaction in the current session. This statement has an effect only on the next
transactions and has no effect on the future transactions after the next.

transaction characteristics

transaction characteristics

<transaction characteristics> ::= [<transaction mode> [{ <comma> <transaction
mode> }...]]

<transaction mode> ::= <isolation level> | <transaction access mode> |
<diagnostics size>

<transaction access mode> ::= READ ONLY | READ WRITE

<isolation level> ::= ISOLATION LEVEL <level of isolation>

<level of isolation> ::= READ UNCOMMITTED | READ COMMITTED | REPEATABLE READ
| SERIALIZABLE

<diagnostics size> ::= DIAGNOSTICS SIZE <number of conditions>

<number of conditions> ::= <simple value specification>

Specify transaction characteristics.

Example 6.3. Setting Transaction Characteristics

 SET TRANSACTION READ ONLY
 SET TRANSACTION ISOLATION LEVEL SERIALIZABLE
 SET TRANSACTION READ WRITE, ISOLATION LEVEL READ COMMITTED

SET CONSTRAINTS

set constraints mode statement

<set constraints mode statement> ::= SET CONSTRAINTS <constraint name list>
{ DEFERRED | IMMEDIATE }

<constraint name list> ::= ALL | <constraint name> [{ <comma> <constraint
name> }...]

If the statement is issued during a transaction, it applies to the rest of the current transaction. If the statement is issued
when a transaction is not active then it applies only to the next transaction in the current session. HyperSQL does not
yet support this feature.

LOCK TABLE

lock table statement

Sessions and Transactions

173

<lock table statement> ::= LOCK TABLE <table name> { READ | WRITE} [, <table
name> { READ | WRITE} ...]}

In some circumstances, where multiple simultaneous transactions are in progress, it may be necessary to ensure a
transaction consisting of several statements is completed, without being terminated due to possible deadlock. When
this statement is executed, it waits until it can obtain all the listed locks, then returns. If obtaining the locks would
result in a deadlock an error is raised. The SQL statements following this statement use the locks already obtained
(and obtain new locks if necessary) and can proceed without waiting. All the locks are released when a COMMIT or
ROLLBACK statement is issued.

When the isolation level of a session is READ COMMITTED, read locks are released immediately after the execution
of the statement, therefore you should use only WRITE locks in this mode. Alternatively, you can switch to the
SERIALIZABLE isolation mode before locking the tables for the specific transaction that needs to finish consistently
and without a deadlock. It is best to execute this statement at the beginning of the transaction with the complete list
of required read and write locks.

Currently, this command does not have any effect when the database transaction control model is MVCC.

Example 6.4. Locking Tables

 LOCK TABLE table_a WRITE, table_b READ

SAVEPOINT

savepoint statement

<savepoint statement> ::= SAVEPOINT <savepoint specifier>

<savepoint specifier> ::= <savepoint name>

Establish a savepoint. This command is used during an SQL transaction. It establishes a milestone for the current
transaction. The SAVEPOINT can be used at a later point in the transaction to rollback the transaction to the milestone.

RELEASE SAVEPOINT

release savepoint statement

<release savepoint statement> ::= RELEASE SAVEPOINT <savepoint specifier>

Destroy a savepoint. This command is rarely used as it is not very useful. It removes a SAVEPOINT that has already
been defined.

COMMIT

commit statement

<commit statement> ::= COMMIT [WORK] [AND [NO] CHAIN]

Terminate the current SQL-transaction with commit. This make all the changes to the database permanent.

ROLLBACK

rollback statement

<rollback statement> ::= ROLLBACK [WORK] [AND [NO] CHAIN]

Sessions and Transactions

174

Rollback the current SQL transaction and terminate it. The statement rolls back all the actions performed during the
transaction. If NO CHAIN is specified, a new SQL transaction is started just after the rollback. The new transaction
inherits the properties of the old transaction.

ROLLBACK TO SAVEPOINT

rollback statement

<rollback statement> ::= ROLLBACK [WORK] TO SAVEPOINT <savepoint specifier>

Rollback part of the current SQL transaction and continue the transaction. The statement rolls back all the
actions performed after the specified SAVEPOINT was created. The same effect can be achieved with the
rollback(Savepoint savepoint) method of the JDBC Connection object.

Example 6.5. Rollback

 -- perform some inserts, deletes, etc.
 SAVEPOINT A
 -- perform some inserts, deletes, selects etc.
 ROLLBACK WORK TO SAVEPOINT A
 -- all the work after the declaration of SAVEPOINT A is rolled back

DISCONNECT

disconnect statement

<disconnect statement> ::= DISCONNECT

Terminate the current SQL session. Closing a JDBC connection has the same effect as this command.

SET SESSION CHARACTERISTICS

set session characteristics statement

<set session characteristics statement> ::= SET SESSION CHARACTERISTICS AS
<session characteristic list>

<session characteristic list> ::= <session characteristic> [{ <comma> <session
characteristic> }...]

<session characteristic> ::= <session transaction characteristics>

<session transaction characteristics> ::= TRANSACTION <transaction mode>
[{ <comma> <transaction mode> }...]

Set one or more characteristics for the current SQL-session. This command is used to set the transaction mode for the
session. This endures for all transactions until the session is closed or the next use of this command. The current read-
only mode can be accessed with the ISREADONLY() function.

Example 6.6. Setting Session Characteristics

 SET SESSION CHARACTERISTICS AS TRANSACTION READ ONLY
 SET SESSION CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL SERIALIZABLE
 SET SESSION CHARACTERISTICS AS TRANSACTION READ WRITE, ISOLATION LEVEL READ COMMITTED

SET SESSION AUTHORIZATION

Sessions and Transactions

175

set session user identifier statement

<set session user identifier statement> ::= SET SESSION AUTHORIZATION <value
specification>

Set the SQL-session user identifier. This statement changes the current user. The user that executes this command must
have the CHANGE_AUTHORIZATION role, or the DBA role. After this statement is executed, all SQL statements
are executed with the privileges of the new user. The current authorisation can be accessed with the CURRENT_USER
and SESSION_USER functions.

Example 6.7. Setting Session Authorization

 SET SESSION AUTHORIZATION 'FELIX'
 SET SESSION AUTHORIZATION SESSION_USER

SET ROLE

set role statement

<set role statement> ::= SET ROLE <role specification>

<role specification> ::= <value specification> | NONE

Set the SQL-session role name and the current role name for the current SQL-session context. The user that executes
this command must have the specified role. If NONE is specified, then the previous CURRENT_ROLE is eliminated.
The effect of this lasts for the lifetime of the session. The current role can be accessed with the CURRENT_ROLE
function.

SET TIME ZONE

set local time zone statement

<set local time zone statement> ::= SET TIME ZONE <set time zone value>

<set time zone value> ::= <interval value expression> | <string value expression>
| LOCAL

Set the current default time zone displacement for the current SQL-session. When the session starts, the time zone
displacement is set to the time zone of the client. This command changes the time zone displacement. The effect of
this lasts for the lifetime of the session. If LOCAL is specified, the time zone displacement reverts to the local time
zone of the session that was in force prior to the use of the command.

From version 2.7, zone strings indicating geographical regions can be used. These zone often support daylight saving
time.

This command works fine with in-process databases. When the sessions is for a connection to a server, this command
should not generally be used as it only affects the server part of the session. With client / server connections, the only
way to specify a session time zone that is different from the local time zone is by setting the client JVM time zone
prior to connecting to the database.

Example 6.8. Setting Session Time Zone

 SET TIME ZONE LOCAL
 SET TIME ZONE INTERVAL '+6:00' HOUR TO MINUTE
 SET TIME ZONE '-6:00'
 SET TIME ZONE 'America/Chicago'

Sessions and Transactions

176

SET CATALOG

set catalog statement

<set catalog statement> ::= SET <catalog name characteristic>

<catalog name characteristic> ::= CATALOG <value specification>

Set the default schema name for unqualified names used in SQL statements that are prepared or executed directly in
the current sessions. As there is only one catalog in the database, only the name of this catalog can be used. The current
catalog can be accessed with the CURRENT_CATALOG function.

SET SCHEMA

set schema statement

<set schema statement> ::= SET <schema name characteristic>

<schema name characteristic> ::= SCHEMA <value specification> | <schema name>

Set the default schema name for unqualified names used in SQL statements that are prepared or executed directly in
the current sessions. The effect of this lasts for the lifetime of the session. The SQL Standard form requires the schema
name as a single-quoted string. HyperSQL also allows the use of the identifier for the schema. The current schema
can be accessed with the CURRENT_SCHEMA function.

SET PATH

set path statement

<set path statement> ::= SET <SQL-path characteristic>

<SQL-path characteristic> ::= PATH <value specification>

Set the SQL-path used to determine the subject routine of routine invocations with unqualified routine names used in
SQL statements that are prepared or executed directly in the current sessions. The effect of this lasts for the lifetime
of the session.

SET MAXROWS

set max rows statement

<set max rows statement> ::= SET MAXROWS <unsigned integer literal>

The normal operation of the session has no limit on the number of rows returned from a SELECT statement. This
command set the maximum number of rows of the result returned by executing queries.

This statement has a similar effect to the setMaxRows(int max) method of the JDBC Statement interface,
but it affects the results returned from the next statement execution only. After the execution of the next statement,
the MAXROWS limit is removed.

Only zero or positive values can be used with this command. The value overrides any value specified with
setMaxRows(int max) method of a JDBC statement. The statement SET MAXROWS 0 means no limit.

It is possible to limit the number of rows returned from SELECT statements with the FETCH <n> ROWS ONLY, or
its alternative, LIMIT <n>. Therefore, this command is not recommended for general use. The only legitimate use of
this command is for checking and testing queries that may return very large numbers of rows.

SET SESSION RESULT MEMORY ROWS

Sessions and Transactions

177

set session result memory rows statement

<set session result memory rows statement> ::= SET SESSION RESULT MEMORY ROWS
<unsigned integer literal>

By default, the session uses memory to build result sets, subquery results, and temporary tables. This command sets
the maximum number of rows of the result (and temporary tables) that should be kept in memory. If the row count
of the result or temporary table exceeds the setting, the result is stored on disk. The default is 0, meaning all result
sets are held in memory.

This statement applies to the current session only. The general database setting is:

SET DATABASE DEFAULT RESULT MEMORY ROWS <unsigned integer literal>

SET IGNORECASE

set ignore case statement

<set ignore case statement> ::= SET IGNORECASE { TRUE | FALSE }

This is a legacy method for creating case-insensitive columns. Still supported but not recommended for use.

Sets the type used for new VARCHAR table columns. By default, character columns in new databases are case-
sensitive. If SET IGNORECASE TRUE is used, all VARCHAR columns in new tables are set to use a collation
that converts strings to uppercase for comparison. In the latest versions of HyperSQL you can specify the collations
for the database and for each column and have some columns case-sensitive and some not, even in the same table.
The collation's strength is used to force case-insensitive comparison. Collations are discussed in the Schemas and
Database Objects chapter.

This statement must be switched before creating tables. Existing tables and their data are not affected.

178

Chapter 7. Text Tables
Text Tables as a Standard Feature of HSQLDB

Bob Preston, The HSQL Development Group
Fred Toussi, The HSQL Development Group
$Revision: 6425 $

Copyright 2002-2022 Bob Preston and Fred Toussi. Permission is granted to distribute this document
without any alteration under the terms of the HSQLDB license. Additional permission is granted to the HSQL
Development Group to distribute this document with or without alterations under the terms of the HSQLDB
license.
2022-10-20

Overview
Text Table support for HSQLDB was originally developed by Bob Preston independently from the Project.
Subsequently Bob joined the Project and incorporated this feature into version 1.7.0, with a number of enhancements,
especially the use of SQL commands for specifying the files used for Text Tables.

In a nutshell, Text Tables are CSV or other delimited files treated as SQL tables. Any ordinary CSV or other delimited
file can be used. The full range of SQL queries can be performed on these files, including SELECT, INSERT, UPDATE
and DELETE. Indexes and unique constraints can be set up, and foreign key constraints can be used to enforce
referential integrity between Text Tables themselves or with conventional tables.

The delimited file can be created by the engine, or an existing file can be used.

HyperSQL with Text Table support is the only comprehensive solution that employs the power of SQL and the
universal reach of JDBC to handle data stored in text files.

The Implementation

Definition of Tables

Text Tables are defined similarly to conventional tables with the added TEXT keyword.

 CREATE TEXT TABLE <tablename> (<column definition> [<constraint definition>])

The table is at first empty and cannot be written to. An additional SET command specifies the file and the separator
character that the Text table uses. It assigns the file to the table.

 SET TABLE <tablename> SOURCE <quoted_filename_and_options> [DESC]

Scope and Reassignment

• A Text table without a file assigned to it is READ ONLY and EMPTY.

• Reassigning a Text Table definition to a new file has implications in the following areas:

1. The user is required to be an administrator.

Text Tables

179

2. Existing transactions are committed at this point.

3. Constraints, including foreign keys referencing this table, are kept intact but not checked. It is the responsibility
of the administrator to ensure their integrity.

The new source file is scanned and indexes are built when it is assigned to the table. At this point any violation of
NOT NULL, UNIQUE or PRIMARY KEY constraints are caught and the assignment is aborted. However, foreign
key constraints are not checked at the time of assignment or reassignment of the source file.

Null Values in Columns of Text Tables
• Empty fields are treated as NULL. These are fields where there is nothing or just spaces between the separators.

• Quoted empty strings are treated as empty strings.

Configuration
The default field separator is a comma (,). A different field separator can be specified within the SET TABLE SOURCE
statement. For example, to change the field separator for the table mytable to a vertical bar, place the following in the
SET TABLE SOURCE statement, for example:

 SET TABLE mytable SOURCE "myfile;fs=|"

Since HSQLDB treats CHAR and VARCHAR strings the same, the ability to assign a different separator to the latter
is provided. When a different separator is assigned to a VARCHAR, it will terminate any CSV field of that type. For
example, if the first field is CHAR, and the second field VARCHAR, and the separator fs has been defined as the
pipe (|) and vs as the period (.) then the data in the CSV file for a row will look like:

 First field data|Second field data.Third field data

This facility in effect offers an extra, special separator which can be used in addition to the global separator. The
following example shows how to change the default separator to the pipe (|), VARCHAR separator to the period (.)
within a SET TABLE SOURCE statement:

 SET TABLE mytable SOURCE "myfile;fs=|;vs=."

HSQLDB also recognises the following special indicators for separators:

special indicators for separators

\semi semicolon

\quote single-quote

\space space character

\apos apostrophe

\colon colon character

\n newline - Used as an end anchor (like $ in regular expressions)

\r carriage return

\t tab

\\ backslash

Text Tables

180

\u#### a Unicode character specified in hexadecimal

Furthermore, HSQLDB provides csv file support with three additional boolean options: ignore_first, quoted
and all_quoted. The ignore_first option (default false) tells HSQLDB to ignore the first line in a file. This
option is used when the first line of the file contains column headings or other title information. The first line consists
of the characters before the first end-of-line symbol (line feed, carriage return, etc). It is simply set aside and not
processed. The all_quoted option (default false) tells the program that it should use quotes around all character
fields when writing to the source file. The quoted option (default true) uses quotes only when necessary to distinguish
a field that contains the separator character. It can be set to false to prevent the use of quoting altogether and treat quote
characters as normal characters. All these options may be specified within the SET TABLE SOURCE statement:

 SET TABLE mytable SOURCE "myfile;ignore_first=true;all_quoted=true"

When the default options all_quoted= false and quoted=true are in force, fields that are written to a line
of the csv file will be quoted only if they contain the separator or the quote character. The quote character inside the
field is doubled when written out to the file. When all_quoted=false and quoted=false the quote character
is not doubled. With this option, it is not possible to insert any string containing the separator into the table, as it
would become impossible to distinguish from a separator. While reading an existing data source file, the program treats
each individual field separately. It determines that a field is quoted only if the first character is the quote character.
It interprets the rest of the field on this basis.

The setting, null_def, can be used to simplify importing text files containing empty fields. These fields
are interpreted as null but the user may want an empty string or another default value instead of null. With
null_def=true defined in the text source string, and a table column that is defined as DEFAULT <val> NOT
NULL with a constant value for the default, the default value will be used instead of any empty or NULL field.

The character encoding for the source file is ASCII by default, which corresponds to the 8-bit ANSI character
set. To support UNICODE or source files prepared with different encodings this can be changed to UTF-8 or
any other encoding. The default is encoding=ASCII and the option encoding=UTF-8 or other supported
encodings can be used. From version 2.3.4, the two-byte-per-character encodings of UTF-16 are also supported. The
encoding=UTF-16BE is big-endian, while encoding=UTF-16LE is little-endian. The encoding=UTF-16 is
big-endian by default. This encoding reads a special Unicode character called BOM if it is present at the beginning of
an existing file and if this character indicates little-endian, the file is treated as such. Note HSQLDB does not write
a BOM character to the files it creates from scratch.

Finally, HSQLDB provides the ability to read a text file as READ ONLY, by placing the keyword "DESC" at the end
of the SET TABLE SOURCE statement:

 SET TABLE mytable SOURCE "myfile" DESC

Text table source files are cached in memory. The maximum number of rows of data that are in memory at any time is
controlled by the cache_rows property. The default value for cache_rows is 1000 and can be changed by setting
the default database property. The cache_size property sets the maximum amount of memory used for each text
table. The default is 100 KB. The properties can be set for individual text tables. These properties do not control the
maximum size of each text table, which can be much larger. An example is given below:

 SET TABLE mytable SOURCE
 "myfile;ignore_first=true;all_quoted=true;cache_rows=10000;cache_size=1000"

The properties used in earlier versions, namely the textdb.cache_scale and the
textdb.cache_size_scale can still be used for backward compatibility, but the new properties are preferred.

Supported Properties

quoted = { true | false } default is true. If false, treats double quotes as normal characters

Text Tables

181

all_quoted = { true | false } default is false. If true, adds double quotes around all fields.

encoding = <encoding name> character encoding for text and character fields, for example, encoding=UTF-8.
UTF-16, UTF-16BE, UTF-16LE can also be used.

ignore_first = { true | false } default is false. If true ignores the first line of the file

null_def = { true | false } default is false. If true, replaces any null or empty fields in the text file rows
with the column default value of the not-null column

cache_rows= <numeric value> rows of the text file in the cache. Default is 1000 rows

cache_size = <numeric value>r total size of the rows in the cache. Default is 100 KB.

cache_scale= <numeric value>
and cache_size_scale = <numeric
value>

deprecated properties, replaced by cached_rows and cache_size properties
above.

fs = <unquoted character> field separator

vs = <unquoted character> varchar separator

qc = <unquoted character> quote character

Disconnecting Text Tables
Text tables may be disconnected from their underlying data source, i.e. the text file.

You can explicitly disconnect a text table from its file by issuing the following statement:

 SET TABLE mytable SOURCE OFF

Subsequently, mytable will be empty and read-only. However, the data source description will be preserved, and
the table can be re-connected to it with

 SET TABLE mytable SOURCE ON

When a database is opened, if the source file for an existing text table is missing, the table remains disconnected from
its data source but the source description is preserved. This allows the missing source file to be added to the directory
and the table re-connected to it with the above command.

Disconnecting text tables from their source has several uses. While disconnected, the text source can be edited outside
HSQLDB, provided data integrity is respected. When large text sources are used, and several constraints or indexes
need to be created on the table, it is possible to disconnect the source during the creation of constraints and indexes
and reduce the time it takes to perform the operation.

Text File Usage
The following information applies to the usage of text tables.

Text File Issues

• With file databases, text file locations are restricted to below the directory that contains the database, unless the
textdb.allow_full_path property is set true as a Java system property. This feature is for security, otherwise
an admin database user may be able to open random files. The specified text source path is interpreted differently
according to this property. By default, the path is interpreted as a relative path to the directory path of database files,

Text Tables

182

it therefore cannot contain the double dot notation for parent directory. This path is then appended by the engine
to the directory path to form a full path.

When the property is true, and the path starts with the forward slash or back slash, or the path contains a semicolon,
the path is not appended to the directory path and is used as it is to open the file. In this usage the path is absolute.

• By default, all-in-memory databases cannot use text tables. To enable this capability the
textdb.allow_full_path property must be set true as a Java system property. The text file path is used
as submitted and interpreted as an absolute path as described above, or a path relative to the Java process execute
path. These text tables are always read-only.

• Databases store in jars or as files on the classpath and opened with the res: protocol can reference read-only text
files. These files are opened as resources. The file path is an absolute path beginning with a forward slash.

• Blank lines are allowed anywhere in the text file, and are ignored.

• It is possible to define a primary key, identity column, unique, foreign key and check constraints for text tables.

• When a table source file is used with the ignore_first=true option, the first, ignored line is replaced with
a blank line after a SHUTDOWN COMPACT, unless the SOURCE HEADER statement has been used.

• An existing table source file may include CHARACTER fields that do not begin with the quote character but contain
instances of the quote character. These fields are read as literal strings. Alternatively, if any field begins with the
quote character, then it is interpreted as a quoted string that should end with the quote character and any instances
of the quote character within the string is doubled. When any field containing the quote character or the separator is
written out to the source file by the program, the field is enclosed in quote character and any instance of the quote
character inside the field is doubled.

• Inserts or updates of CHARACTER type field values are allowed with strings that contains the linefeed or the
carriage return character. This feature is disabled when both quoted and all_quoted properties are false.

• ALTER TABLE commands that add or drop columns or constraints (apart from check constraints) are not supported
with text tables that are connected to a source. First use the SET TABLE <name> SOURCE OFF, make the changes,
then turn the source ON.

• Use the default setting (quoted=true) for selective quoting of fields. Those fields that need quoting are quoted, other
not.

• Use the quoted=false setting to avoid quoting of fields completely. With this setting any quote character is considered
part of the text.

• Use the all_quoted=true setting to force all fields to be quoted.

• You can choose the quote character. The default is the double-quote character.

• SHUTDOWN COMPACT results in a complete rewrite of text table sources that are open at the time. The settings
for quoted and all_quoted are applied for the rewrite.

Text File Global Properties
The database engine uses a set of defaults for text table properties. Each table's data source may override these defaults.
It is also possible to override the defaults globally, so they apply to all text tables. The statement SET DATABASE
TEXT TABLE DEFAULTS <properties string> can be used to override the default global properties. An example
is given below:

 SET DATABASE TEXT TABLE DEFAULTS
 'all_quoted=true;encoding=UTF-8;cache_rows=10000;cache_size=2000'

Text Tables

183

List of supported global properties

• qc="

• fs=,

• vs=,

• quoted=true

• all_quoted=false

• ignore_first=false

• null_def=false

• encoding=ASCII

• cache_rows=1000

• cache_size=100

• textdb.allow_full_path=false (a system property)

Transactions
Text tables fully support transactions. New or changed rows that have not been committed are not updated in the source
file. Therefore, the source file always contains committed rows.

However, text tables are not as resilient to machine crashes as other types of tables. If the crash happens while the text
source is being written to, the text source may contain only some of the changes made during a committed transaction.
With other types of tables, additional mechanisms ensure the integrity of the data and this situation will not arise.

184

Chapter 8. Access Control

Fred Toussi, The HSQL Development Group
$Revision: 3096 $

Copyright 2010-2022 Fred Toussi. Permission is granted to distribute this document without any alteration
under the terms of the HSQLDB license. Additional permission is granted to the HSQL Development Group
to distribute this document with or without alterations under the terms of the HSQLDB license.
2022-10-20

Overview
This chapter is about controlling access to database objects such as tables and routines. Other topics related to security
include user authentication, password complexity and secure connections. These topics are covered in the System
Management chapter and the HyperSQL Network Listeners (Servers) chapter.

Apart from schemas and their object, each HyperSQL catalog has USER and ROLE objects. These objects are
collectively called authorizations. Each AUTHORIZATION has some access rights on some of the schemas and the
database objects such as tables and routines contained in those schemas.

Authorization names are stored in the database in case-normal form. When a user is created with the CREATE USER
statement, if the user name is enclosed in double quotes, the exact name is used as the case-normal form. But if it is
not enclosed in double quotes, the name is converted to uppercase and this uppercase version is stored in the database
as the case-normal form. When connecting to a database via JDBC, the user name and password must match the case
of the stored form.

Each database has at least one admin user. When the first connection to a non-existent database is made, the admin
user is created with the the user name for the connection. The user name SA is suggested in the documentation but
you can use any name.

Authorizations and Access Control
In general, ROLE and USER objects simply control access to schema objects. There is the built-in DBA role that
allows full access to all possible operations on the database, including the creation of USER and ROLE objects and
schemas. There are other built-in roles that allow some special operations on the database as a whole. Admin users
have the DBA role.

A ROLE has a name, a collection of zero or more other roles, plus some privileges (access rights). A USER has a
name and a password. It similarly has a collection of zero or more roles plus some privileges.

USER objects existed in SQL-92, but ROLE objects were introduced in SQL:1999. The co-existence of ROLE and
USER objects results in complexity. With the addition of ROLE objects, there is no rationale, other than legacy support,
for granting privileges to USER objects directly. It is better to create roles and grant privileges to them, then grant
the roles to USER objects.

The Standard effectively defines a special ROLE, named PUBLIC. All authorizations have the PUBLIC role, which
cannot be removed from them. Therefore, any access right assigned to the PUBLIC role applies to all authorizations
in the database. For many simple databases, it is adequate to create one or more non-admin user, then assign access
rights to the tables and sequences to the PUBLIC role.

The PUBLIC role is separate from the default PUBLIC schema. The contents of this schema is not visible to non-
admin users unless access is granted by the DBA role.

Access Control

185

Access to INFORMATION_SCHEMA views is automatically granted to PUBLIC; therefore these views are accessible
to all. However, the contents of each view depend on the ROLE or USER (AUTHORIZATION) that is in force while
accessing the view. This means a user cannot even see the existence of tables and other objects when it has no access
rights on those objects.

Each schema has a single AUTHORIZATION. This is commonly known as the owner of the schema. All the objects
in the schema inherit the schema owner. The schema owner can add objects to the schema, drop them or alter them.
By default, the objects in a schema can only be accessed by the schema owner. The schema owner can grant access
rights on the objects to other users or roles.

authorization identifier

authorization identifier

<authorization identifier> ::= <role name> | <user name>

Authorization identifiers share the same name-space within the database. The same name cannot be used for a USER
and a ROLE.

Built-In Roles and Users
There are some pre-defined roles in each database; some defined by the SQL Standard, some by HyperSQL. These
roles can be assigned to users (directly or via other, user-defined roles). In addition, there is the initial admin user
created with each new database. The initial user name and password is defined in the connection properties when the
first connection to the database is made. In older versions of HSQLDB, this name was always SA. But in the latest
version, the name can be defined as a different string.

Admin User

the Admin user (HyperSQL-specific)

This user is automatically created with a new database and has the DBA role. This user name and its password are
defined in the connection properties when connecting to the new database to create the database. This user can change
the password, create other users and create new schemas and other objects. The initial admin user can be dropped by
another user that has the DBA role. As a result, there is always at least one admin user in the database.

PUBLIC

the PUBLIC role

The role that is assigned to all authorizations (roles and users) in the database. This role has access rights to all objects
in the INFORMATION_SCHEMA with limited visibility. Any roles or rights granted to this role, are in effect granted
to all users of the database.

_SYSTEM

the _SYSTEM role

This role is the authorization for the pre-defined (system) objects in the database, including the
INFORMATION_SCHEMA. This role cannot be assigned to any authorization (user or role).

DBA

the DBA role (HyperSQL-specific)

This is a special role in HyperSQL. A user that has this role can perform all possible administrative tasks on the
database. The DBA role can also act as a proxy for all the roles and users in the database. This means it can do

Access Control

186

everything the authorization for a schema can do, including dropping the schema or its objects, or granting rights on
the schema objects to a grantee. All admin users have this role.

CREATE_SCHEMA

the CREATE_SCHEMA role (HyperSQL-specific)

An authorization that has this role, can create schemas. The DBA authorization has this role and can grant it to other
authorizations.

CHANGE_AUTHORIZATION

the CHANGE_AUTHORIZATION role (HyperSQL-specific)

A user that has this role, can change the authorization for the current session to another user. The other user cannot
have the DBA role (otherwise, the original user would gain DBA privileges). The DBA authorization has this role
and can grant it to other authorizations.

SCRIPT_OPS

the SCRIPT_OPS role (HyperSQL-specific)

A user that has this role, can execute the PERFORM EXPORT SCRIPT and PERFORM IMPORT SCRIPT statements.
The DBA authorization has this role and can grant it to other authorizations.

Listing Users and Roles
Tables in the INFORMATION_SCHEMA contain the list of users and roles for the database. Only admin users can
see the full contents of these tables.

The SYSTEM_USERS tables contains the list of users, with some extra settings for each user. The
AUTHORIZATIONS table contains a list of both users and roles.

Several other INFORMATION_SCHEMA tables list the privileges granted to users and roles on different database
objects. Refer to the Schemas and Database Objects chapter for a list and description of the tables. Example below:

 SELECT * FROM INFORMATION_SCHEMA.SYSTEM_USERS
 SELECT * FROM INFORMATION_SCHEMA.TABLE_PRIVILEGES

Access Rights
The create schema statements has an optional AUTHORIZATION clause: For example:

 CREATE SCHEMA mySchema AUTHORIZATION aUserOrRole

If the authorization is not specified, the DBA role becomes the authorization. This authorization is the owner of the
schema. By default, the objects in a schema can only be accessed by the schema owner. But the schema owner can
grant privileges (access rights) on the objects to other users or roles.

Things can get far more complex because the grant of privileges can be made WITH GRANT OPTION. In this case,
the role or user that has been granted the privilege can grant the privilege to other roles and users.

Privileges can also be revoked from users or roles.

The statements for granting and revoking privileges normally specify which privileges are granted or revoked.
However, there is a shortcut, ALL PRIVILEGES, which means all the privileges that the <grantor> has on the
specified schema object. The <grantor> is normally the CURRENT_USER of the session that issues the statement.

Access Control

187

The user or role that is granted privileges is referred to as <grantee> for the granted privileges.

TABLE

For tables, including views, privileges can be granted with different degrees of granularity. It is possible to grant a
privilege on all columns of a table, or on specific columns of the table.

The DELETE privilege applies to the table, rather than its columns. It applies to all DELETE statements.

The SELECT, INSERT and UPDATE privileges may apply to all columns or to individual columns. These privileges
determine whether the <grantee> can execute SQL data statements on the table.

The SELECT privilege designates the columns that can be referenced in SELECT statements, as well as the columns
that are read in a DELETE or UPDATE statement, including the search condition.

The INSERT privilege designates the columns into which explicit values can be inserted. To be able to insert a row
into the table, the user must therefore have the INSERT privilege on the table, or at least all the columns that do not
have a default value.

The UPDATE privilege designates the table or the specific columns that can be updated.

A MERGE statement requires SELECT privileges together with INSERT, UPDATE and DELETE privileges when
these actions are specified in the statement.

The REFERENCES privilege allows the <grantee> to define a FOREIGN KEY constraint on a different table,
which references the table or the specific columns designated for the REFERENCES privilege.

The TRIGGER privilege allows adding a trigger to the table.

SEQUENCE, TYPE, DOMAIN, CHARACTER SET, COLLATION, TRANSLITERATION

For these objects, only USAGE can be granted. The USAGE privilege is needed when object is referenced directly
in an SQL statement.

ROUTINE

For routines, including procedures or functions, only EXECUTE privilege can be granted. This privilege is needed
when the routine is used directly in an SQL statement.

OTHER OBJECTS

Other objects such as constraints and assertions are not used directly and there is no grantable privilege that refers
to them.

Simple Access Control
The simplest form of access control is when the DBA user creates a single non-admin user, then creates the tables and
other objects in the PUBLIC schema, and grants access to the objects to PUBLIC. A grant to PUBLIC applies to all
non-admin users, including any users that are created later.

CREATE USER generalUser PASSWORD 'aPassword'

-- the objects are created one by one in the PUBLIC schema
SET SCHEMA PUBLIC
CREATE TABLE aTable ...
CREATE TABLE anotherTable ...
...
CREATE SEQUENCE aSequence ...
CREATE PROCECURE aProc ...

Access Control

188

'''

-- access rights are granted to PUBLIC, which includes the generalUser
GRANT ALL ON ALL TABLES IN SCHEMA public TO PUBLIC
GRANT ALL ON ALL SEQUENCES IN SCHEMA public TO PUBLIC
GRANT ALL ON ALL ROUTINES IN SCHEMA public TO PUBLIC

When different users need to have different levels of access, the privileges are granted to individual users as opposed
to PUBLIC. In the example below there are 2 users with different access rights to the objects in the schema.

-- two users are created first
CREATE USER generalUser PASSWORD 'aPassword'
CREATE USER auditUser PASSWORD 'anotherPassword'

-- the schema and its objects are created with a single compound statement
CREATE SCHEMA mySchema AUTHORIZATION DBA
 CREATE TABLE aTable ...
 CREATE TABLE anotherTable ...
 ...
 CREATE SEQUENCE aSequence ...
 CREATE PROCECURE aProc ...
 ''';

-- different access rights are granted to the users
GRANT ALL ON ALL TABLES IN SCHEMA mySchema TO generalUser
GRANT USAGE ON ALL SEQUENCES IN SCHEMA mySchema TO generalUser
GRANT EXECUTE ON ALL ROUTINES IN SCHEMA mySchema TO generalUser
GRANT SELECT ON ALL TABLES IN SCHEMA mySchema TO auditUser;

Fine-Grained Data Access Control
A USER or ROLE that does not own a schema can be granted access to individual columns of a table in the schema.
HyperSQL adds a feature that is not part of the SQL Standard to allow access to be granted to a ROLE only for certain
rows of a table, based on a FILTER condition.

When the GRANT statement contains a FILTER condition, the condition is applied to each row of the table that a
SELECT, INSERT, UPDATE, DELETE or MERGE statement tries to access. Only the rows that satisfy the condition
are accessed and all other rows are ignored.

The following is an example of this usage. The table INFO has a column that determines the geographic region for
each row of data and another column that holds the expiration date for this row. The owner of the schema can access
and change the data in all the rows of this table. A group of ordinary users with the eu_admin role is only allowed to
access the data for a certain region. Another group with the eu_user role is only allowed to access the rows before
the expiration date.

CREATE TABLE info(id INT PRIMARY KEY, info VARCHAR(100), region VARCHAR(32) NOT NULL, expires
 DATE NOT NULL)
-- there is also a foreign key constraint on the REGION column to reference a list of valid
 region names.
INSERT INTO info VALUES 2, 'inserted data for EU current', 'European Union', CURRENT_DATE + 1 DAY
INSERT INTO info VALUES 3, 'inserted data for SA current', 'South America', CURRENT_DATE + 1 DAY
INSERT INTO info VALUES 4, 'inserted data for EU expired', 'European Union', CURRENT_DATE - 1 DAY
CREATE ROLE eu_admin
CREATE ROLE eu_user
GRANT SELECT FILTER (WHERE region = 'European Union') ON TABLE info TO eu_admin
GRANT SELECT FILTER (WHERE region = 'European Union' AND expires > CURRENT_DATE) ON TABLE info TO
 eu_user
GRANT eu_admin TO peter, wendy
GRANT eu_user TO emma, john

In the above example, the EU_ADMIN and EU_USER roles are granted to the users that are allowed to access the data
for the European Union. These users cannot see the rows that are for other regions. Among them, only the EU_ADMIN

Access Control

189

users can see the rows that have expired. The SELECT grant with FILTER also prevents the users from deleting or
updating the rows they cannot access.

The <filter clause> can be used for other forms of fine-grained access control. In the example below, the
COMMON_ROLE role is defined and granted access during office hours only.

CREATE ROLE common_role
GRANT SELECT FILTER (WHERE EXTRACT(HOUR FROM CURRENT_TIMESTAMP) BETWEEN 9 AND 17) ON TABLE info
 TO common_role

Fine-grained data access control can also be used to implement multi-tenancy database solutions.

A separate <filter clause> can be declared on each of SELECT, DELETE, INSERT and UPDATE rights on the
table. To change an existing fine-grained right granted to a ROLE on a table, the existing right must be revoked before
a GRANT with FILTER is made. Use of ALTER TABLE to remove columns that are not referenced in a FILTER
condition, or to add new columns to the table, does not affect the validity of the FILTER condition. But if any column
that is referenced is removed, you need to REVOKE the filtered rights.

With a MERGE statement, which may contain INSERT, UPDATE, and DELETE clauses, the UPDATE filter is used
when selecting the rows to UPDATE, as well as rows to DELETE.

Statements for Authorization and Access Control
The statements listed below allow creation and destruction of USER and ROLE objects. The GRANT and REVOKE
statements allow roles to be assigned to other roles or to users. The same statements are also used in a different form
to assign privileges on schema objects to users and roles.

CREATE USER

user definition (HyperSQL)

<user definition> ::= CREATE USER <user name> PASSWORD <password> [ADMIN]

Define a new user and its password. <user name> is an SQL identifier. If it is double-quoted it is case-sensitive,
otherwise it is turned to uppercase. <password> is a string enclosed with single quote characters and is case-sensitive.
If ADMIN is specified, the DBA role is granted to the new user. Only a user with the DBA role can execute this
statement.

DROP USER

drop user statement (HyperSQL)

<drop user statement> ::= DROP USER <user name>

Drop (destroy) an existing user. If the specified user is the authorization for a schema, the schema is destroyed.

Only a user with the DBA role can execute this statement.

ALTER USER ... SET PASSWORD

set the password for a user (HyperSQL)

<alter user set password statement> ::= ALTER USER <user name> SET PASSWORD
<password>

Change the password of an existing user. <user name> is an SQL identifier. If it is double-quoted it is case-sensitive,
otherwise it is turned to uppercase. <password> is a string enclosed with single quote characters and is case-sensitive.

Access Control

190

Only a user with the DBA role can execute this command.

ALTER USER ... SET INITIAL SCHEMA

set the initial schema for a user (HyperSQL)

<alter user set initial schema statement> ::= ALTER USER <user name> SET INITIAL
SCHEMA <schema name> | DEFAULT

Change the initial schema for a user. The initial schema is the schema used by default for SQL statements issued during
a session. If DEFAULT is used, the default initial schema for all users is used as the initial schema for the user. The
SET SCHEMA command allows the user to change the schema for the duration of the session.

Only a user with the DBA role can execute this statement.

ALTER USER ... SET LOCAL

set the user authentication as local (HyperSQL)

<alter user set local> ::= ALTER USER <user name> SET LOCAL { TRUE | FALSE }

Sets the authentication method for the user as local. This statement has an effect only when external authentication
with role names is enabled. In this method of authentication, users created in the database are ignored and an
external authentication mechanism, such as LDAP is used. This statement is used if you want to use local, password
authentication for a specific user.

Only a user with the DBA role can execute this statement.

SET PASSWORD

set password statement (HyperSQL)

<set password statement> ::= SET PASSWORD <password>

Set the password for the current user. <password> is a string enclosed with single quote characters and is case-
sensitive.

SET INITIAL SCHEMA

set the initial schema for the current user (HyperSQL)

<set initial schema statement> ::= SET INITIAL SCHEMA <schema name> | DEFAULT

Change the initial schema for the current user. The initial schema is the schema used by default for SQL statements
issued during a session. If DEFAULT is used, the default initial schema for all users is used as the initial schema for
the current user. The separate SET SCHEMA command allows the user to change the schema for the duration of the
session. See also the Sessions and Transactions chapter.

SET DATABASE DEFAULT INITIAL SCHEMA

set the default initial schema for all users (HyperSQL)

<set database default initial schema statement> ::= SET DATABASE DEFAULT INITIAL
SCHEMA <schema name>

Sets the initial schema for new users. This schema can later be changed with the <set initial schema
statement> command.

Access Control

191

CREATE ROLE

role definition

<role definition> ::= CREATE ROLE <role name> [WITH ADMIN <grantor>]

Defines a new role. Initially the role has no rights, except those of the PUBLIC role. Only a user with the DBA role
can execute this command.

DROP ROLE

drop role statement

<drop role statement> ::= DROP ROLE <role name>

Drop (destroy) a role. If the specified role is the authorization for a schema, the schema is destroyed. Only a user with
the DBA role can execute this statement.

GRANTED BY

grantor determination

GRANTED BY <grantor>

<grantor> ::= CURRENT_USER | CURRENT_ROLE

The authorization that is granting or revoking a role or privileges. The optional GRANTED BY <grantor> clause
can be used in various statements that perform GRANT or REVOKE actions. If the clause is not used, the authorization
is CURRENT_USER. Otherwise, it is the specified authorization.

GRANT

grant privilege statement

<grant privilege statement> ::= GRANT <privileges> TO <grantee> [{ <comma>
<grantee> }...] [WITH GRANT OPTION] [GRANTED BY <grantor>]

Assign privileges on schema objects to roles or users. Each <grantee> is a role or a user. If [WITH GRANT
OPTION] is specified, then the <grantee> can assign the privileges to other <grantee> objects.

<privileges> ::= <object privileges> ON <object name> [<filter clause>]

<object privileges> ::= ALL PRIVILEGES | <action> [<filter clause>] [{ <comma>
<action> }...]

<action> ::= SELECT [<left paren> <privilege column list> <right paren>] |
DELETE | INSERT [<left paren> <privilege column list> <right paren>] | UPDATE
[<left paren> <privilege column list> <right paren>] | REFERENCES [<left
paren> <privilege column list> <right paren>] | TRIGGER | USAGE | EXECUTE

<object name> ::= { <single object name> | <schema object set name> }

<simple object name> ::= [TABLE] <table name> | DOMAIN <domain name> |
COLLATION <collation name> | CHARACTER SET <character set name> | TRANSLATION
<transliteration name> | TYPE <user-defined type name> | SEQUENCE <sequence
generator name> | <specific routine designator> | ROUTINE <routine name> |
FUNCTION <function name> | PROCEDURE <procedure name>

Access Control

192

<schema object set name> ::= ALL { TABLES | SEQUENCES | ROUTINES } IN SCHEMA
<schema name>

<privilege column list> ::= <column name list>

<filter clause> ::= FILTER <left paren> WHERE <search condition> <right paren>

<grantee> ::= PUBLIC | <authorization identifier>

The <object privileges> that can be used depend on the type of the <object name>. These are discussed
in the previous section. For a table or view, if <privilege column list> is not specified, then the privilege is
granted on the table, which includes all of its columns and any column that may be added to it in the future.

For routines, the name of the routine can be specified in two ways, either as the generic name, or as the specific name
for a signature. HyperSQL allows referencing the generic name which covers all overloaded versions of a routine
at the same time. This is an extension to the SQL Standard, which requires the use of <specific routine
designator> to grant privileges separately on each different signature of the routine.

HyperSQL also adds the <schema object set name> option as an extension to the SQL Standard. This form
grants the privileges to all the tables of the schema with a single GRANT statement.

The <filter clause> can be specified after the <object name> to limit access for all the granted privileges,
or it can be used after individual privileges.

Each <grantee> is the name of a role or a user. Examples of GRANT statement are given below:

 GRANT ALL ON SEQUENCE aSequence TO roleOrUser
 GRANT SELECT ON aTable TO roleOrUser
 GRANT SELECT(col3, col5) ON aTable TO aRole
 GRANT SELECT, UPDATE FILTER(WHERE aColumn > 2) ON aTABLE TO role1 -- filter only for update
 GRANT SELECT, UPDATE ON aTable FILTER(WHERE aColumn > 2) TO role2 -- filter for both select and
 update
 GRANT SELECT(columnA, columnB), UPDATE(columnA, columnB) ON TABLE aTable TO user1, role1, role2
 GRANT EXECUTE ON SPECIFIC ROUTINE aroutine_1234 TO roleOrUser
 GRANT SELECT ON ALL TABLES IN SCHEMA mySchema TO PUBLIC

As mentioned in the general discussion, it is better to define a role for a collection of all the privileges required by
an application. This role is then granted to any user. If further changes are made to the privileges of this role, they
are automatically reflected in all the users that have the role. Fine-grained privileges (those with a FILTER clause)
can be granted to roles only.

GRANT

grant role statement

<grant role statement> ::= GRANT <role name> [{ <comma> <role name> }...]
TO <grantee> [{ <comma> <grantee> }...] [WITH ADMIN OPTION] [GRANTED BY
<grantor>]

Assign roles to roles or users. One or more roles can be assigned to one or more <grantee> objects. A <grantee>
is a user or a role. If the [WITH ADMIN OPTION] is specified, then each <grantee> can grant the newly
assigned roles to other grantees. An example of user and role creation with grants is given below:

 CREATE USER appuser
 CREATE ROLE approle
 GRANT approle TO appuser
 GRANT SELECT, UPDATE ON TABLE atable TO approle
 GRANT USAGE ON SEQUENCE asequence to approle
 GRANT EXECUTE ON ROUTINE aroutine TO approle

Access Control

193

REVOKE privilege

revoke statement

<revoke privilege statement> ::= REVOKE [GRANT OPTION FOR] <privileges> FROM
<grantee> [{ <comma> <grantee> }...] [GRANTED BY <grantor>] RESTRICT | CASCADE

Revoke privileges from a user or role. The syntax elements are similar to the GRANT statements.

REVOKE role

revoke role statement

<revoke role statement> ::= REVOKE [ADMIN OPTION FOR] <role revoked> [{ <comma>
<role revoked> }...] FROM <grantee> [{ <comma> <grantee> }...] [GRANTED
BY <grantor>] RESTRICT | CASCADE

<role revoked> ::= <role name>

Revoke a role from users or roles.

194

Chapter 9. SQL-Invoked Routines

Fred Toussi, The HSQL Development Group
$Revision: 6474 $

Copyright 2010-2022 Fred Toussi. Permission is granted to distribute this document without any alteration
under the terms of the HSQLDB license. Additional permission is granted to the HSQL Development Group
to distribute this document with or without alterations under the terms of the HSQLDB license.
2022-10-20

Overview
SQL-invoked routines are functions and procedures called from SQL. HyperSQL 2.7 supports routines conforming
to two parts of the SQL Standard. Routines written in the SQL language are supported in conformance to SQL/PSM
(Persistent Stored Modules) specification. Routines written in Java are supported in broad conformance to SQL/JRT
specification. In addition, HyperSQL's previous non-standard support for calling Java routines without prior method
definition is retained and enhanced in the latest version by extending the SQL/JRT specification.

HyperSQL also supports user-defined aggregate functions written in the SQL language or Java. This feature is an
extension to the SQL Standard.

SQL-invoked routines are schema-level objects. Naming and referencing follows conventions common to all schema
objects. The same routine name can be defined in two different schemas and used with schema-qualified references.

A routine is either a procedure or a function.

A function:

• is defined with CREATE FUNCTION

• always returns a single value or a single table

• does not modify the data in the database

• is used as part of an SQL statement such as a SELECT statement, as well as called separately using the CALL
statement

• can have parameters

• can be polymorphic

A procedure:

• is defined with CREATE PROCEDURE

• can return zero to multiple values or result sets

• can modify the data in the database

• is called separately, using the CALL statement

• can have parameters

SQL-Invoked Routines

195

• can be polymorphic

Definition of routine signature and characteristics, name resolution and invocation are all implemented uniformly for
routines written in SQL or Java.

Access to routines can be granted to users with GRANT EXECUTE or GRANT ALL. For example, GRANT EXECUTE
ON myroutine TO PUBLIC.

Routine Definition
SQL-Invoked Routines, whether PSM or JRT, are defined using a SQL statement with the same syntax. The part that
is different is the <routine body> which consists of SQL statements in PSM routines or a reference to a Java
method in JRT routines.

Details of Routine definition are discussed in this section. You may start by reading the next two sections which provide
several examples before reading this section for the details.

Routine definition has several mandatory or optional clauses. The complete BNF supported by HyperSQL and the
remaining clauses are documented in this section.

CREATE FUNCTION

CREATE PROCEDURE

routine definition

Routine definition is similar for procedures and functions. A function definition has the mandatory <returns
clause> which is discussed later. The description given so far covers the essential elements of the specification with
the BNF given below.

<schema procedure> ::= CREATE PROCEDURE <schema qualified routine name> <SQL
parameter declaration list> <routine characteristics> <routine body>

<schema function> ::= CREATE FUNCTION <schema qualified routine name> <SQL
parameter declaration list> <returns clause> <routine characteristics> <routine
body>

Parameter declaration list has been described above. For SQL/JRT routines, the <SQL parameter name> is
optional while for SQL/PSM routines, it is required. If the <parameter mode> of a parameter is OUT or INOUT,
it must be specified. The BNF is given below:

<SQL parameter declaration list> ::= <left paren> [<SQL parameter declaration>
[{ <comma> <SQL parameter declaration> }...]] <right paren>

<SQL parameter declaration> ::= [<parameter mode>] [<SQL parameter name>]
<parameter type>

<parameter mode> ::= IN | OUT | INOUT

<parameter type> ::= <data type>

Return Value and Table Functions

RETURNS

returns clause

SQL-Invoked Routines

196

The <returns clause> specifies the type of the return value of a function (not a procedure). For all SQL/PSM
and SQL/JRT functions, this is usually a type definition which can be a built-in type, a DOMAIN type or a DISTINCT
type. For example, RETURNS INTEGER.

The return type can alternatively be a TABLE definition. Functions that return a table are called table functions. Table
functions are used differently from normal functions. A table function can be used in an SQL query expression exactly
where a normal table or view is allowed.

If a <returns table type> is defined for an SQL/PSM function, the following expression is used inside the
function to return a table: RETURN TABLE (<query expression>); In the example blow, a table with
two columns is returned.

 RETURN TABLE (SELECT a, b FROM atable WHERE e = 10);

Functions that return a table are designed to be used in SELECT statements using the TABLE keyword to form a
joined table.

When a JDBC CallableStatement is used to CALL the function, the table returned from the function call is
returned and can be accessed with the getResultSet() method of the CallableStatement.

<returns clause> ::= RETURNS <returns type>

<returns type> ::= <returns data type> | <returns table type>

<returns table type> ::= TABLE <table function column list>

<table function column list> ::= <left paren> <table function column list
element> [{ <comma> <table function column list element> } ...] <right paren>

<table function column list element> ::= <column name> <data type>

<returns data type> ::= <data type>

routine body

routine body

Routine body is either one or more SQL statements or a Java reference. The user that defines the routine by issuing the
CREATE FUNCTION or CREATE SCHEMA command must have the relevant access rights to all tables, sequences,
routines, etc. that are accessed by the routine. If another user is given EXECUTE privilege on the routine, then there are
two possibilities, depending on the <rights clause>. This clause refers to the access rights that are checked when
a routine is invoked. The default is SQL SECURITY DEFINER, which means access rights of the definer are used;
therefore, no extra checks are performed when the other user invokes the routine. The alternative SQL SECURITY
INVOKER means access rights on all the database objects referenced by the routine are checked for the invoker. This
alternative is not supported by HyperSQL.

<routine body> ::= <SQL routine spec> | <external body reference>

<SQL routine spec> ::= [<rights clause>] <SQL routine body>

<rights clause> ::= SQL SECURITY INVOKER | SQL SECURITY DEFINER

SQL routine body

SQL routine body

The routine body of an SQL routine consists of an statement.

SQL-Invoked Routines

197

<SQL routine body> ::= <SQL procedure statement>

EXTERNAL NAME

external body reference

External name specifies the qualified name of the Java method associated with this routine. HyperSQL only supports
Java methods within the classpath. The <external Java reference string> is a quoted string which starts
with CLASSPATH: and is followed by the Java package, class and method names separated with dots. HyperSQL
does not currently support the optional <Java parameter declaration list>.

<external body reference> ::= EXTERNAL NAME <external Java reference string>

<external Java reference string> ::= <jar and class name> <period> <Java method
name> [<Java parameter declaration list>]

Routine Characteristics
The <routine characteristics> clause covers several sub-clauses

<routine characteristics> ::= [<routine characteristic>...]

<routine characteristic> ::= <language clause> | <parameter style clause> |
SPECIFIC <specific name> | <deterministic characteristic> | <SQL-data access
indication> | <null-call clause> | <returned result sets characteristic> |
<savepoint level indication>

LANGUAGE

language clause

The <language clause> refers to the language in which the routine body is written. It is either SQL or Java. The
default is SQL, so JAVA must be specified for SQL/JRT routines.

<language clause> ::= LANGUAGE <language name>

<language name> ::= SQL | JAVA

The parameter style is not allowed for SQL routines. It is optional for Java routines and, in HyperSQL, the only value
allowed is JAVA.

<parameter style> ::= JAVA

SPECIFIC NAME

specific name

The SPECIFIC <specific name> clause is optional but the engine will creates an automatic name if it is not
present. When there are several versions of the same routine, the <specific name> is used in schema manipulation
statements to drop or alter a specific version. The <specific name> is a user-defined name. It applies to both
functions and procedures. In the examples below, two versions of a functions are defined with the same name and
different parameter types. A specific name is specified for each function.

 CREATE FUNCTION an_hour_before(t TIMESTAMP)
 RETURNS TIMESTAMP
 NO SQL
 LANGUAGE JAVA PARAMETER STYLE JAVA
 SPECIFIC an_hour_before_or_now_with_timestamp
 EXTERNAL NAME 'CLASSPATH:org.npo.lib.nowLessAnHour'

SQL-Invoked Routines

198

 CREATE FUNCTION an_hour_before (e_type INT)
 RETURNS TIMESTAMP SPECIFIC an_hour_before_max_with_int
 RETURN (SELECT MAX(event_time) FROM atable WHERE event_type = e_type) - 1 HOUR

DETERMINISTIC

deterministic characteristic

The <deterministic characteristic> clause indicates that a routine is deterministic or not. Deterministic
means the routine does not reference random values, external variables, or time of invocation. The default is NOT
DETERMINISTIC. It is essential to declare this characteristic correctly for an SQL/JRT routine, as the engine does not
know the contents of the Java code, which could include calls to methods returning random or time sensitive values.

<deterministic characteristic> ::= DETERMINISTIC | NOT DETERMINISTIC

SQL DATA access

SQL DATA access characteristic

The <SQL-data access indication> clause indicates the extent to which a routine interacts with the database
or the data stored in the database tables in different schemas (SQL DATA).

NO SQL means no SQL command is issued in the routine body and can be used only for SQL/JRT functions.

CONTAINS SQL means some SQL commands are used, but they do not read or modify the SQL data. READS SQL
DATA and MODIFIES SQL DATA are self-explanatory.

A CREATE PROCEDURE definition can use MODIFIES SQL DATA. This is not allowed in CREATE FUNCTION.
Note that a PROCEDURE or a FUNCTION may have internal tables or return a table which is populated by the
routine's statements. These tables are not considered SQL DATA, therefore there is no need to specify MODIFIES
SQL DATA for such routines.

<SQL-data access indication> ::= NO SQL | CONTAINS SQL | READS SQL DATA |
MODIFIES SQL DATA

NULL INPUT

null call clause

Null Arguments

The <null-call clause> is used only for functions. If a function returns NULL when any of the calling
arguments is null, then by specifying RETURNS NULL ON NULL INPUT, calls to the function are known to be
redundant and do not take place when an argument is null. This simplifies the coding of the SQL/JRT Java methods
and improves performance at the same time.

<null-call clause> ::= RETURNS NULL ON NULL INPUT | CALLED ON NULL INPUT

SAVEPOINT LEVEL

transaction impact

The <savepoint level indication> is used only for procedures and refers to the visibility of existing
savepoints within the body of the procedure. If NEW SAVEPOINT LEVEL is specified, savepoints that have been
declared prior to calling the procedure become invisible within the body of the procedure. HyperSQL’s implementation
accepts only NEW SAVEPOINT LEVEL.

SQL-Invoked Routines

199

<savepoint level indication> ::= NEW SAVEPOINT LEVEL | OLD SAVEPOINT LEVEL

DYNAMIC RESULT SETS

returned result sets characteristic

The <returned result sets characteristic> is used with SQL/PSM and SQL/JRT procedures (not with
functions). The maximum number of result sets that a procedure may return can be specified with the clause below.
The default is zero. If you want your procedure to return result sets, you must specify the maximum number of result
sets that your procedure may return. Details are discussed in the next sections.

<returned result sets characteristic> ::= DYNAMIC RESULT SETS <maximum returned
result sets>

SQL Language Routines (PSM)
The PSM (Persistent Stored Module) specification extends the SQL language with structures and control statements
such as conditional and loop statements. Both SQL Function and SQL procedure bodies use the same syntax, with
minor exceptions.

The routine body is a SQL statement. In its simplest form, the body is a single SQL statement. A simple example of
a function is given below:

 CREATE FUNCTION an_hour_before (t TIMESTAMP)
 RETURNS TIMESTAMP
 RETURN t - 1 HOUR

An example of the use of the function in an SQL statement is given below:

 SELECT an_hour_before(event_timestamp) AS notification_timestamp, event_name FROM events;

The CUSTOMERS and ADDRESSES tables as defined below are used in our examples:

 CREATE TABLE customers(id INTEGER GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY, firstname
 VARCHAR(50), lastname VARCHAR(50), added TIMESTAMP);

 CREATE TABLE addresses(id INTEGER GENERATED BY DEFAULT AS IDENTITY, customerid INTEGER, address
 VARCHAR(50));

 ALTER TABLE addresses ADD CONSTRAINT fk_addr FOREIGN KEY(customerid) REFERENCES customers(id)

A simple example of a procedure to insert into the CUSTOMERS table is given below. Note the keyword DEFAULT
is used to insert the generated IDENTITY value into the ID column. Also note the BEGIN ATOMIC and END are
optional when there is only one statement in the procedure.

 CREATE PROCEDURE new_customer(firstname VARCHAR(50), lastname VARCHAR(50))
 MODIFIES SQL DATA
 INSERT INTO CUSTOMERS VALUES DEFAULT, firstname, lastname, CURRENT_TIMESTAMP;

An example of the use of the procedure is given below:

 CALL new_customer('JOHN', 'SMITH');

The routine body is often a compound statement. A compound statement can contain one or more SQL statements,
which can include control statements, as well as nested compound statements.

SQL-Invoked Routines

200

Please note carefully the use of <semicolon>, which is required at the end of some statements but not accepted
at the end of others.

Advantages and Disadvantages

SQL Language Routines (PSM) have certain advantages over Java Language Routines (SQL/JRT) and a couple of
disadvantages.

• SQL language routines (PSM) do not rely on custom Java classes to be present on the classpath. The databases that
use them are therefore more portable.

• For a routine that accesses SQL DATA, all the SQL statements in an SQL routine are known and monitored by the
engine. The engine will not allow a table, routine or sequence that is referenced in an SQL routine to be dropped,
or its structure modified in a way that will break the routine execution. The engine does not keep this information
about a Java routine.

• Because the statements in an SQL routine are known to the engine, the execution of an SQL routine locks all
the database objects it needs to access before the actual execution. With Java routines, locks are obtained during
execution and this may cause additional delays in multi-threaded access to the database.

• For routines that do not access SQL DATA, Java routines (SQL/JRT) may be faster if they perform extensive
calculations.

• Only Java routines can access external programs and resources directly.

Routine Statements

The following SQL Statements can be used only in routines. These statements are covered in this section.

<handler declaration>

<table variable declaration>

<variable declaration>

<declare cursor>

<assignment statement>

<compound statement>

<case statement>

<if statement>

<while statement>

<repeat statement>

<for statement>

<loop statement>

<iterate statement

<leave statement>

SQL-Invoked Routines

201

<signal statement>

<resignal statement>

<return statement>

<select statement: single row>

<open statement>

The following SQL Statements can be used in procedures but not in generally in functions (they can be used in functions
only to change the data in a local table variable) . These statements are covered in other chapters of this Guide.

<call statement>

<delete statement>

<insert statement>

<update statement>

<merge statement>

Transaction statements such as COMMIT and ROLLBACK are not allowed in the body of a function or procedure.
When the session is in auto-commit mode, the commit takes place after the execution of the whole procedure has been
completed. No commit is performed during the execution.

As shown in the examples below, the formal parameters and the variables of the routine can be used in statements,
similar to the way a column reference is used.

Compound Statement
A compound statement is enclosed in a BEGIN / END block with optional labels. It can contain one or more <table
variable declaration>, <SQL variable declaration>, <declare cursor> or <handler
declaration> before at least one SQL statement. The BNF is given below:

<compound statement> ::= [<beginning label> <colon>] BEGIN [[NOT] ATOMIC]

[{<table variable declaration> <semicolon>} ...]

[{<SQL variable declaration> <semicolon>} ...]

[{<declare cursor> <semicolon>} ...]

[{<handler declaration> <semicolon>}...]

{<SQL procedure statement> <semicolon>} ...

END [<ending label>]

An example of a simple compound statement body is given below. It performs the common task of inserting related
data into two table. The IDENTITY value that is automatically inserted in the first table is retrieved using the
IDENTITY() function and inserted into the second table. Other examples show more complex compound statements.
Note polymorphism allows the previously defined NEW_CUSTOMER procedure to coexist with this one as their
parameter lists are different.

 CREATE PROCEDURE new_customer(firstname VARCHAR(50), lastname VARCHAR(50), address
 VARCHAR(100))

SQL-Invoked Routines

202

 MODIFIES SQL DATA
 BEGIN ATOMIC
 INSERT INTO customers VALUES (DEFAULT, firstname, lastname, CURRENT_TIMESTAMP);
 INSERT INTO addresses VALUES (DEFAULT, IDENTITY(), address);
 END

Table Variables
A <table variable declaration> defines the name and columns of a local table, that can be used in
the routine body. The table cannot have constraints. Table variable declarations are made before scalar variable
declarations.

 BEGIN ATOMIC
 DECLARE TABLE temp_table (col_a INT, col_b VARCHAR(50);
 DECLARE temp_id INTEGER;
 -- more statements
 END

Variables
A <variable declaration> defines the name and data type of the variable and, optionally, its default value. In
the next example, a variable is used to hold the IDENTITY value. In addition, the formal parameters of the procedure
are identified as input parameters with the use of the optional IN keyword. This procedure does exactly the same job
as the procedure in the previous example.

 CREATE PROCEDURE new_customer(IN firstname VARCHAR(50), IN lastname VARCHAR(50), IN address
 VARCHAR(100))
 MODIFIES SQL DATA
 BEGIN ATOMIC
 DECLARE temp_id INTEGER;
 INSERT INTO CUSTOMERS VALUES (DEFAULT, firstname, lastname, CURRENT_TIMESTAMP);
 SET temp_id = IDENTITY();
 INSERT INTO ADDRESSES VALUES (DEFAULT, temp_id, address);
 END

The BNF for variable declaration is given below:

DECLARE variable

SQL variable declaration

<SQL variable declaration> ::= DECLARE <variable name list> <data type> [DEFAULT
<default value>]

<variable name list> ::= <variable name> [{ <comma> <variable name> }...]

Examples of variable declaration are given below. Note that in a DECLARE statement with multiple comma-separated
variable names, the type and the default value applies to all the variables in the list:

 BEGIN ATOMIC
 DECLARE temp_zero DATE;
 DECLARE temp_one, temp_two INTEGER DEFAULT 2;
 DECLARE temp_three VARCHAR(20) DEFAULT 'no name';
 -- more statements ...
 SET temp_zero = DATE '2010-03-18';
 SET temp_two = 5;
 -- more statements ...
 END

SQL-Invoked Routines

203

Cursors

A <declare cursor> statement is used to declare a SELECT statement. The current usage of this
statement in HyperSQL is exclusively to return a result set from a procedure. The result set is returned
to the JDBC CallableStatement object that calls the procedure. The getResultSet() method of
CallableStatement is then used to retrieve the JDBC ResultSet.

In the <routine definition>, the DYNAMIC RESULT SETS clause must be used to specify a value above zero.
The DECLARE CURSOR statement is used after any variable declaration in compound statement block. The SELECT
statement should be followed with FOR READ ONLY to avoid possible error messages. The <open statement>
is then executed for the cursor at the point where the result set should be populated.

After the procedure is executed with a JDBC CallableStatement execute() or executeQery() call, all
the result sets that were opened are returned to the JDBC CallableStatement.

Calling getResultSet() will return the first ResultSet. When there are multiple result sets, the
getMoreResults() method of the Callable statement is called to move to the next ResultSet, before
getResultSet() is called to return the next ResultSet. See the Data Access and Change chapter on the syntax
for declaring the cursor.

The simple example below returns a result set containing the list of recently added customers since the data used as
argument:

 CREATE PROCEDURE recent_customers(IN since_date DATE)
 READS SQL DATA DYNAMIC RESULT SETS 1
 BEGIN ATOMIC
 DECLARE temp_zero DATE;
 DECLARE result CURSOR WITH RETURN FOR SELECT * FROM CUSTOMERS WHERE added > since_date;
 -- you can have more more statements here ...
 OPEN result;
 END

Handlers

A <handler declaration> defines the course of action when an exception or warning is raised during the
execution of the compound statement. A compound statement may have one or more handler declarations. These
handlers become active when code execution enters the compound statement block and remain active in any sub-block
and statement within the block. The handlers become inactive when code execution leaves the block.

In the previous example of the new_customer procedure, if an exception is thrown during the execution of either
SQL statement, the execution of the compound statement is terminated and the exception is propagated and thrown
by the CALL statement for the procedure. All changes made by the procedure are rolled back.

A handler declaration can resolve the thrown exception within the compound statement without propagating it, and
allow the execution of the compound statement to continue.

We add a check constraint to the CUSTOMERS table to disallow empty names.

 ALTER TABLE customers ADD CONSTRAINT check_names CHECK (CHAR_LENGTH(FIRSTNAME) > 1 AND
 CHAR_LENGTH(LASTNAME) > 2) ;

An attempt to insert invalid names will now result in the check constraint throwing an exception. In the example below,
the UNDO handler declaration catches any exception that is thrown during the execution of the compound statement
inside the BEGIN ... END block. As it is an UNDO handler, all the changes to data performed within the compound
statement (BEGIN ... END block) are rolled back. The procedure then returns without throwing an exception. We
can define a label for each BEGIN / END block, as done in this example.

SQL-Invoked Routines

204

 CREATE PROCEDURE new_customer(IN firstname VARCHAR(50), IN lastname VARCHAR(50), IN address
 VARCHAR(100))
 MODIFIES SQL DATA
 label_one: BEGIN ATOMIC
 DECLARE temp_id INTEGER;
 DECLARE UNDO HANDLER FOR SQLEXCEPTION;
 INSERT INTO CUSTOMERS VALUES (DEFAULT, firstname, lastname, CURRENT_TIMESTAMP);
 SET temp_id = IDENTITY();
 INSERT INTO ADDRESSES VALUES (DEFAULT, temp_id, address);
 END

Other types of hander are CONTINUE and EXIT handlers. A CONTINUE handler ignores any exception and proceeds
to the next statement in the block. An EXIT handler terminates execution without undoing the data changes performed
by the previous (successful) statements.

The conditions can be general conditions, or specific conditions.

Among general conditions that can be specified, SQLEXCEPTION covers all exceptions, SQLWARNING covers all
warnings, while NOT FOUND covers the not-found condition, which is raised when a DELETE, UPDATE, INSERT
or MERGE statement completes without actually affecting any row.

Alternatively, one or more specific conditions can be specified (separated with commas) which apply to specific
exceptions or warnings or classes or exceptions or warnings. A specific condition is specified with SQLSTATE
<value>, for example SQLSTATE 'W_01003' specifies the warning raised after a SQL statement is executed
which contains an aggregate function which encounters a null value during execution. An example is given below
which activates the handler when either of the two warnings is raised:

 DECLARE UNDO HANDLER FOR SQLSTATE 'W_01003', 'W_01004';

The BNF for <handler declaration> is given below:

DECLARE HANDLER

declare handler statement

<handler declaration> ::= DECLARE {UNDO | CONTINUE | EXIT} HANDLER FOR
{SQLEXCEPTION | SQLWARNING | NOT FOUND} | { SQLSTATE <state value> [, ...]}
[<SQL procedure statement>];

A handler declaration may specify an <SQL procedure statement> to be performed when the handler is
activated. In the example below the handler performs the UNDO as in the previous example then inserts the (invalid)
data into a separate table. We create a new table for the invalid attempts.

 CREATE TABLE invalid_customers (LIKE customers) ;

 CREATE PROCEDURE new_customer(IN firstname VARCHAR(50), IN lastname VARCHAR(50), IN address
 VARCHAR(100))
 MODIFIES SQL DATA
 label_one: BEGIN ATOMIC
 DECLARE temp_id INTEGER;
 DECLARE UNDO HANDLER FOR SQLEXCEPTION
 INSERT INTO invalid_customers VALUES(DEFAULT, firstname, lastname, address);
 -- last statement is part of the handler; it is called only if the next statements throw an
 exception

 INSERT INTO CUSTOMERS VALUES (DEFAULT, firstname, lastname, CURRENT_TIMESTAMP);
 SET temp_id = IDENTITY();
 INSERT INTO ADDRESSES VALUES (DEFAULT, temp_id, address);
 END

SQL-Invoked Routines

205

The <SQL procedure statement> in the handler declaration is required by the SQL Standard but is optional in
HyperSQL. If the execution of the <SQL procedure statement> specified in the handler declaration throws an
exception itself, then it is handled by the handlers that are currently active at an enclosing (outer) BEGIN ... END
block. The <SQL procedure statement> can itself be a compound statement with its own handlers.

When a handler handles an exception condition such as the general SQLEXCEPTION or some specific SQLSTATE,
any changes made by the statement that caused the exception will be rolled back. For example, execution of a single
update statement that modifies several rows will not change any row if an exception occurs during the update of one
of the rows. The handler action affects the changes made by statements that were executed successfully before the
exception occurred.

Actions performed by different types of handler are listed below:

• An UNDO handler rolls back all the data changes within the BEGIN ... END block which contains the handler
declaration. The execution of the BEGIN ... END block is considered complete. If an <SQL procedure
statement> is specified, it is executed after the roll back.

• A CONTINUE handler does not roll back the data changes. It continues execution as if the last statement was
successful. If an <SQL procedure statement> is specified, it is executed before continuing execution.

• An EXIT handler does not roll back the data changes. It aborts the execution of the BEGIN ... END block
which contains the handler declaration. The execution of the BEGIN ... END block is considered complete, but
unlike the UNDO handler the actions are not rolled back. If an <SQL procedure statement> is specified,
it is executed before aborting.

Assignment Statement
The SET statement is used for assignment. It can be used flexibly with rows or single values. The BNF is given below:

<assignment statement> ::= <singleton variable assignment> | <multiple variable
assignment>

<singleton variable assignment> ::= SET <assignment target> <equals operator>
<assignment source>

<multiple variable assignment> ::= SET (<variable or parameter>, ...) = <row
value expression>

In the example below, the result of the SELECT is assigned to two OUT arguments. The SELECT must return one
row. If it returns more than one, an exception is raised. If it returns no row, no change is made to ARG_FIRST and
ARG_LAST.

 CREATE PROCEDURE get_customer_name(IN arg_id INT, OUT arg_first VARCHAR(50), OUT arg_last
 VARCHAR(50))
 READS SQL DATA
 BEGIN ATOMIC
 SET (arg_first, arg_last) = (SELECT firstname, lastname FROM customers WHERE id = arg_id);
 END

In the example below, the result of a function call is assigned to VAR1.

 SET var1 = SQRT(var2);

Select Statement : Single Row
A special form of SELECT can also be used for assigning values from a query to one or more arguments or variables.
This works similar to a SET statement that has a SELECT statement as the source.

SQL-Invoked Routines

206

SELECT : SINGLE ROW

select statement: single row

<select statement: single row> ::= SELECT [<set quantifier>] <select list>
INTO <select target list> <table expression>

<select target list> ::= <target specification> [{ <comma> <target
specification> }...]

Retrieve values from a specified row of a table and assign the fields to the specified targets. The example below has
an identical effect to the SET statement in the GET_CUSTOMER_NAME procedure.

SELECT firstname, lastname INTO arg_first, arg_last FROM customers WHERE id = arg_id;

Formal Parameters
Each parameter of a procedure can be defined as IN, OUT or INOUT. An IN parameter is an input to the procedure
and is passed by value. The value cannot be modified inside the procedure body. An OUT parameter is a reference
for output. An INOUT parameter is a reference for both input and output. An OUT or INOUT parameter argument is
passed by reference, therefore only a dynamic parameter argument or a variable within an enclosing procedure can be
passed for it. The assignment statement is used to assign a value to an OUT or INOUT parameter.

In the example below, the procedure is declared with an OUT parameter. It assigns the auto-generated IDENTITY
value from the INSERT statement to the OUT argument.

 CREATE PROCEDURE new_customer(OUT newid INT, IN firstname VARCHAR(50), IN lastname VARCHAR(50),
 IN address VARCHAR(100))
 MODIFIES SQL DATA
 BEGIN ATOMIC
 DECLARE temp_id INTEGER;
 INSERT INTO CUSTOMERS VALUES (DEFAULT, firstname, lastname, CURRENT_TIMESTAMP);
 SET temp_id = IDENTITY();
 INSERT INTO ADDRESSES VALUES (DEFAULT, temp_id, address);
 SET newid = temp_id;
 END

In the SQL session, or in the body of another stored procedure, a variable must be assigned to the OUT parameter.
After the procedure call, this variable will hold the new identity value that was generated inside the procedure. If the
procedure is called directly, using the JDBC CallableStatement interface, then the value of the first, OUT argument
can be retrieved with a call to getInt(1)after calling the execute() method.

In the example below, a session variable, the_new_id is declared. After the call to new_customer, the value
for the identity is stored in the_new_id variable. This is returned via the next VALUES statement. Alternatively,
the_new_id can be used as an argument to another CALL statement. Session variables are useful during
development and for SQL scripting tools.

 DECLARE the_new_id INT DEFAULT NULL;
 CALL new_customer(the_new_id, 'John', 'Smith', '10 Parliament Square');
 VALUES the_new_id;

Iterated Statements
Various iterated statements can be used in routines. In these statements, the <SQL statement list> consists of
one or more SQL statements. The <search condition> can be any valid SQL expression of BOOLEAN type.

SQL-Invoked Routines

207

LOOP

loop statement

<loop statement> ::= [<beginning label> <colon>] LOOP <SQL statement list>
END LOOP [<ending label>]

The LOOP statement is a simple loop without its own condition. A conditional LEAVE statement inside the loop is
used to break out of the loop.

WHILE

while statement

<while statement> ::= [<beginning label> <colon>] WHILE <search condition> DO
<SQL statement list> END WHILE [<ending label>]

The WHILE statement is a loop with a condition at the top, similar to Java while loop.

In the example below, multiple rows are inserted into a table in a WHILE loop:

 DECLARE my_ver INTEGER DEFAULT 2;
 loop_label: WHILE my_var < 20 DO
 INSERT INTO CUSTOMERS VALUES (DEFAULT, my_var);
 SET my_var = my_var + 1;

 -- LEAVE can be used to break the loop
 IF my_var = 15 THEN LEAVE loop_label; END IF;
 END WHILE loop_label;

REPEAT

repeat statement

<repeat statement> ::= [<beginning label> <colon>]

REPEAT <SQL statement list> UNTIL <search condition> END REPEAT [<ending label>

The REPEAT statement is a loop with a condition at the bottom, similar to Java do ... while loop.

Iterated FOR Statement

The <for statement> is similar to other iterated statement, but it is always used with a cursor declaration to
iterate over the rows of the result set of the cursor and perform operations using the values of each row.

FOR

for statement

<for statement> ::= [<beginning label> <colon>] FOR <query expression> DO <SQL
statement list> END FOR [<ending label>]

The <query expression> is a SELECT statement. When the FOR statement is executed, the query expression is executed
first and the result set is formed. Then for each row of the result set, the <SQL statement list> is executed.
What is special about the FOR statement is that all the columns of the current row can be accessed by name in the

SQL-Invoked Routines

208

statements in the <SQL statement list>. The columns are read only and cannot be updated. For example, if the
column names for the select statement are ID, FIRSTNAME, LASTNAME, then these can be accessed as a variable
name. The column names must be unique and not equivalent to any parameter or variable name in scope.

The FOR statement is useful for computing values over multiple rows of the result set, or for calling a procedure for
some row of the result set.

In the example below, the procedure uses a FOR statement to iterate over the rows for a customer with lastname equal
to lastname_p. No action is performed for the first row, but for all the subsequent rows, the row is deleted from the table.

Notes: The result set for the SELECT statement is built only once, before processing the statements inside the FOR
block begins. For all the rows of the SELECT statement apart from the first row, the row is deleted from the customer
table. The WHERE condition uses the automatic variable id, which holds the customer.id value for the current row of
the result set, to delete the row. The procedure updates the val_p argument and when it returns, the val_p represents
the total count of rows with the given lastname before the duplicates were deleted.

 CREATE PROCEDURE delete_extra_customers(INOUT val_p INT, IN lastname_p VARCHAR(20))
 MODIFIES SQL DATA
 BEGIN ATOMIC
 SET val_p = 0;
 for_label: FOR SELECT * FROM customers WHERE lastname = lastname_p DO
 IF val_p > 0 THEN
 DELETE FROM customers WHERE customers.id = id;
 END IF;
 SET val_p = val_p + 1;
 END FOR for_label;
 END

Conditional Statements
There are two types of CASE ... WHEN statement and the IF ... THEN statement.

CASE WHEN

case when statement

The simple case statement uses a <case operand> as the predicand of one or more predicates. For the right part
of each predicate, it specifies one or more SQL statements to execute if the predicate evaluates TRUE. If the ELSE
clause is not specified, at least one of the search conditions must be true, otherwise an exception is raised.

<simple case statement> ::= CASE <case operand> <simple case statement when
clause>... [<case statement else clause>] END CASE

<simple case statement when clause> ::= WHEN <when operand list> THEN <SQL
statement list>

<case statement else clause> ::= ELSE <SQL statement list>

A skeletal example is given below. The variable var_one is first tested for equality with 22 or 23 and if the test evaluates
to TRUE, then the INSERT statement is performed and the statement ends. If the test does not evaluate to TRUE,
the next condition test, which is an IN predicate, is performed with var_one and so on. The statement after the ELSE
clause is performed if none the previous tests returns TRUE.

CASE var_one
 WHEN 22, 23 THEN INSERT INTO t_one ...;
 WHEN IN (2, 4, 5) THEN DELETE FROM t_one WHERE ...;
 ELSE UPDATE t_one ...;
 END CASE

SQL-Invoked Routines

209

The searched case statement uses one or more search conditions, and for each search condition, it specifies one or
more SQL statements to execute if the search condition evaluates TRUE. An exception is raised if there is no ELSE
clause and none of the search conditions evaluates TRUE.

<searched case statement> ::= CASE <searched case statement when clause>...
[<case statement else clause>] END CASE

<searched case statement when clause> ::= WHEN <search condition> THEN <SQL
statement list>

The example below is partly a rewrite of the previous example, but a new condition is added:

 CASE WHEN var_one = 22 OR var_one = 23 THEN INSERT INTO t_one ...;
 WHEN var_one IN (2, 4, 5) THEN DELETE FROM t_one WHERE ...;
 WHEN var_two IS NULL THEN UPDATE t_one ...;
 ELSE UPDATE t_one ...;
 END CASE

IF

if statement

The if statement is very similar to the searched case statement. The difference is that no exception is raised if there is
no ELSE clause and no search condition evaluates TRUE.

<if statement> ::= IF <search condition> <if statement then clause> [<if
statement elseif clause>...] [<if statement else clause>] END IF

<if statement then clause> ::= THEN <SQL statement list>

<if statement elseif clause> ::= ELSEIF <search condition> THEN <SQL statement
list>

<if statement else clause> ::= ELSE <SQL statement list>

Return Statement
The RETURN statement is required and used only in functions. The body of a function is either a RETURN statement,
or a compound statement that contains a RETURN statement.

The return value of a FUNCTION can be assigned to a variable, or used inside an SQL statement.

An SQL/PSM function or an SQL/JRT function can return a single result when the function is defined as RETURNS
TABLE (..)

To return a table from a SELECT statement, you should use a return statement such as RETURN
TABLE(SELECT ...) in an SQL/PSM function. For an SQL/JRT function, the Java method should return a
JDBCResultSet instance.

To call a function from JDBC, use a java.sql.CallableStatement instance. The getResultSet() call
can be used to access the ResultSet returned from a function that returns a result set. If the function returns a scalar
value, the returned result has a single column and a single row which contains the scalar returned value.

RETURN

return statement

SQL-Invoked Routines

210

<return statement> ::= RETURN <return value>

<return value> ::= <value expression> | NULL

Return a value from an SQL function. If the function is defined as RETURNS TABLE, then the value is a TABLE
expression such as RETURN TABLE(SELECT ...) otherwise, the value expression can be any scalar expression. In
the examples below, the same function is written with or without a BEGIN END block. In both versions, the RETURN
value is a scalar expression.

 CREATE FUNCTION an_hour_before_max (e_type INT)
 RETURNS TIMESTAMP
 RETURN (SELECT MAX(event_time) FROM atable WHERE event_type = e_type) - 1 HOUR

 CREATE FUNCTION an_hour_before_max (e_type INT)
 RETURNS TIMESTAMP
 BEGIN ATOMIC
 DECLARE max_event TIMESTAMP;
 SET max_event = SELECT MAX(event_time) FROM atable WHERE event_type = e_type;
 RETURN max_event - 1 HOUR;
 END

In the example below, a table is defined as the return value. The select statement provides the data to be returned.

 CREATE FUNCTION recent_customers(IN since_date DATE)
 RETURNS TABLE(id INT, first VARCHAR(50), last VARCHAR(50))
 READS SQL DATA
 BEGIN ATOMIC
 RETURN TABLE (SELECT id, firstname, lastname FROM CUSTOMERS WHERE added > since_date);
 END

A function that returns a table can be used directly in SELECT statements. For example:

SELECT * FROM TABLE(recent_customers(CURRENT_DATE - 2 DAY))

Control Statements
In addition to the RETURN statement, the following statements can be used in specific contexts.

ITERATE STATEMENT

The ITERATE statement can be used to cause the next iteration of a labelled iterated statement (a WHILE, REPEAT
or LOOP statement). It is similar to the "continue" statement in C and Java.

<iterate statement> ::= ITERATE <statement label>

LEAVE STATEMENT

The LEAVE statement can be used to leave a labelled block. When used in an iterated statement, it is similar to the
"break" statement is C and Java. But it can be used in compound statements as well.

<leave statement> ::= LEAVE <statement label>

Raising Exceptions
Signal and Resignal Statements allow the routine to throw an exception. If used with the IF or CASE conditions, the
exception is thrown conditionally.

SIGNAL

SQL-Invoked Routines

211

signal statement

The SIGNAL statement is used to throw an exception (or force an exception). When invoked, any exception handler
for the given exception is in turn invoked. If there is no handler, the exception is propagated to the enclosing context.

In its simplest form, when there is no exception handler for the given exception, routine execution is halted, any change
of data is rolled back and the routine throws the exception. By default, the message for the exception is taken from
the predefined exception message for the specified SQLSTATE. A custom message can be specified with the optional
SET clause.

<signal statement> ::= SIGNAL SQLSTATE <state value> [SET MESSAGE_TEXT =
<character string literal>]

RESIGNAL

resignal statement

The RESIGNAL statement is used to throw an exception from an exception handler's <SQL procedure
statement>, in effect propagating the exception to the enclosing context without further action by the currently
active handlers. By default, the message for the exception is taken from the predefined exception message for the
specified SQLSTATE. A custom message can be specified with the optional SET clause.

<resignal statement> ::= RESIGNAL SQLSTATE <state value> [SET MESSAGE_TEXT =
<character string literal>]

Routine Polymorphism

More than one version of a routine can be created.

For procedures, the different versions must have different parameter counts. When the procedure is called, the
parameter count determines which version is called.

For functions, the different versions can have the same or different parameter counts. When the parameter count of
two versions of a function is the same, the type of parameters must be different. When the function is called, the best
matching version of the function is used, according to both the parameter count and parameter types. The return type
of different versions of a function can be the same or different.

Two versions of an overloaded function are given below. One version accepts TIMESTAMP while the other accepts
TIME arguments.

 CREATE FUNCTION an_hour_before_or_now(t TIMESTAMP)
 RETURNS TIMESTAMP
 IF t > CURRENT_TIMESTAMP THEN
 RETURN CURRENT_TIMESTAMP;
 ELSE
 RETURN t - 1 HOUR;
 END IF

 CREATE FUNCTION an_hour_before_or_now(t TIME)
 RETURNS TIME
 CASE t
 WHEN > CURRENT_TIME THEN
 RETURN CURRENT_TIME;
 WHEN >= TIME'01:00:00' THEN
 RETURN t - 1 HOUR;
 ELSE
 RETURN CURRENT_TIME;
 END CASE

SQL-Invoked Routines

212

It is perfectly possible to have different versions of the routine as SQL/JRT or SQL/PSM routines.

Returning Data From Procedures

The OUT or INOUT parameters of a PROCEDURE are used to assign simple values to dynamic parameters or to
variables in the calling context.

According to the Standard, an SQL/PSM or SQL/JRT procedure may also return result sets to the calling context.
These result sets are dynamic in the sense that a procedure may return a different number of result sets or none at all in
different invocations. The SQL Standard uses a mechanism called CURSORS for accessing and modifying rows of a
result set one by one. This mechanism is necessary when the database is accessed from an external application program.
The JDBC ResultSet interface allows this method of access from Java programs and is supported by HyperSQL.

HyperSQL supports this method of returning single or multiple result sets from SQL/PSM procedures only via the
JDBC CallableStatement interface. Cursors are declared and opened within the body of the procedure. No further
operation is performed on the cursors within the procedure. When the execution of the procedure is complete, the
cursors become available as Java ResultSet objects via the CallableStatement instance that called the SQL/PSM
procedure.

The JDBC CallableStatement class is used with the SQL statement CALL <routine name> (<argument
1>, ...) to call procedures (also to call functions). After the call to execute(), the getXXX() methods can be used
to retrieve INOUT or OUT arguments after the call. The getMoreResults() method and the getResultSet()
method can be used to access the ResultSet(s) returned by a procedure that returns one or more results. If the procedure
returns more than one result set, the getMoreResults() call moves to the next result.

In the example below, the procedure inserts a row into the customer table. It then performs the SELECT statement
to return the latest inserted row as a result set. Therefore, the definition includes the DYNAMIC RESULT SETS 1
clause. You must specify correctly the maximum number of result sets that the procedure may return.

 CREATE PROCEDURE new_customer(firstname VARCHAR(50), lastname VARCHAR(50))
 MODIFIES SQL DATA DYNAMIC RESULT SETS 1
 BEGIN ATOMIC
 DECLARE result CURSOR FOR SELECT * FROM CUSTOMERS WHERE ID = IDENTITY();
 INSERT INTO CUSTOMERS VALUES (DEFAULT, firstname, lastname, CURRENT_TIMESTAMP);
 OPEN result;
 END

The above procedure is called in Java using a CallableStatement

 Connection conn = ...;
 CallableStatement call = conn.prepareCall("call new_customer(?, ?)");
 call.setString(1, "Paul");
 call.setString(2, "Smith");
 call.execute();
 if (call.getMoreResults()) // optional
 ResultSet result = call.getResultSet();

Alternatively,

 Connection conn = ...;
 CallableStatement call = conn.prepareCall("call new_customer(?, ?)");
 call.setString(1, "Paul");
 call.setString(2, "Smith");
 call.execute();
 ResultSet result = call.getResultSet();

SQL-Invoked Routines

213

Or in this case, where there is no OUT or INOUT parameter to be accessed after the call, executeQuery() can
be called

 Connection conn = ...;
 CallableStatement call = conn.prepareCall("call new_customer(?, ?)");
 call.setString(1, "Paul");
 call.setString(2, "Smith");
 ResultSet result = call.executeQuery();

In the example below a procedure has one IN argument and two OUT arguments. The JDBC CallableStatement is
used to retrieve the values returned in the OUT arguments.

 CREATE PROCEDURE get_customer(IN p_id INT, OUT p_firstname VARCHAR(50), OUT p_lastname
 VARCHAR(50))
 READS SQL DATA
 BEGIN ATOMIC
 -- this statement uses the p_id to get firstname and lastname
 SELECT firstname, lastname INTO p_firstname, p_lastname FROM customers WHERE id = p_id;
 END

 Connection conn = ...;
 CallableStatement call = conn.prepareCall("call get_customer(?, ?, ?)");
 call.setInt(1, 121); // only the IN (or INOUT) arguments should be set before the call
 call.execute();
 String firstname = call.getString(2); // the OUT (or INOUT) arguments are retrieved after the
 call
 String lastname = call.getString(3);

SQL/JRT procedures are discussed in the Java Language Procedures section below. Those routines are called exactly
the same way as SQL/PSM procedures, using the JDBC CallableStatement interface.

It is also possible to use a JDBC Statement or PreparedStatement object to call a procedure if the procedure arguments
are constant. If the procedure returns one or more result sets, the Statement.getMoreResults() method should
be called before retrieving the ResultSet.

An SQL/JRT or SQL/PSM function (as opposed to procedure) returns either a value or a table in a ResultSet. Functions
are called from JDBC similar to procedures, but with functions, the getMoreResuls() method should not be called
at all. The getResulSet() method is called after calling the execute() method.

Recursive Routines
Routines can be recursive. Recursive functions are often functions that return arrays or tables. To create a recursive
routine, the routine definition must be created first with a dummy body. Then the ALTER ROUTINE statement is
used to define the routine body.

In the example below, the table contains a tree of rows each with a parent. The routine returns an array containing the id
list of all the direct and indirect children of the given parent. The routine appends the array variable id_list with the id of
each direct child and for each child appends the array with the id array of its children by calling the routine recursively.

The routine can be used in a SELECT statement as the example shows.

 CREATE TABLE ptree (pid INT, id INT);
 INSERT INTO ptree VALUES (NULL, 1) ,(1,2), (1,3),(2,4),(4,5),(3,6),(3,7);

 -- the function is created and always throws an exception when used
 CREATE FUNCTION child_arr(p_pid INT) RETURNS INT ARRAY
 SPECIFIC child_arr_one
 READS SQL DATA
 SIGNAL SQLSTATE '45000'

SQL-Invoked Routines

214

 -- the actual body of the function is defined, replacing the statement that throws the exception
 ALTER SPECIFIC ROUTINE child_arr_one
 BEGIN ATOMIC
 DECLARE id_list INT ARRAY DEFAULT ARRAY[];
 for_loop:
 FOR SELECT id FROM ptree WHERE pid = p_pid DO
 SET id_list[CARDINALITY(id_list) + 1] = id;
 SET id_list = id_list || child_arr(id);
 END FOR for_loop;
 RETURN id_list;
 END

 -- the function can now be used in SQL statements
 SELECT * FROM TABLE(child_arr(2))

In the next example, a table with two columns is returned instead of an array. In this example, a local table variable
is declared and filled with the children and the children's children.

 CREATE FUNCTION child_table(p_pid INT) RETURNS TABLE(r_pid INT, r_id INT)
 SPECIFIC child_table_one
 READS SQL DATA
 SIGNAL SQLSTATE '45000'

 ALTER SPECIFIC ROUTINE child_table_one
 BEGIN ATOMIC
 DECLARE TABLE child_tree (pid INT, id INT);
 for_loop:
 FOR SELECT pid, id FROM ptree WHERE pid = p_pid DO
 INSERT INTO child_tree VALUES pid, id;
 INSERT INTO child_tree SELECT r_pid, r_id FROM TABLE(child_table(id));
 END FOR for_loop;
 RETURN TABLE(SELECT * FROM child_tree);
 END

-- the function can now be used in SQL statements
 SELECT * FROM TABLE(child_table(1))

Infinite recursion is not possible as the routine is terminated when a given depth is reached.

Java Language Routines (SQL/JRT)
The general features of SQL-Invoked Routines are shared between PSM and JRT routines. These features are covered
in the previous section. This section deals with specific aspects of JRT routines.

The body of a Java language routine is a static method of a Java class, specified with a fully qualified method name
in the routine definition. A simple CREATE FUNCTION example is given below, which defines the function to call
the java.lang.Math.sinh(double d) Java method. The function can be called in SQL statements just like
any built-in function.

 CREATE FUNCTION sinh(v DOUBLE) RETURNS DOUBLE
 LANGUAGE JAVA DETERMINISTIC NO SQL
 EXTERNAL NAME 'CLASSPATH:java.lang.Math.sinh'

 SELECT sinh(doublecolumn) FROM mytable

In the example below, the static method named toZeroPaddedString is specified to be called when the function
is invoked.

 CREATE FUNCTION zero_pad(x BIGINT, digits INT, maxsize INT)
 RETURNS CHAR VARYING(100)
 LANGUAGE JAVA DETERMINISTIC NO SQL
 EXTERNAL NAME 'CLASSPATH:org.hsqldb.lib.StringUtil.toZeroPaddedString'

SQL-Invoked Routines

215

The signature of the Java method (used in the Java code but not in SQL code to create the function) is given below:

 public static String toZeroPaddedString(long value, int precision, int maxSize)

The parameter and return types of the SQL routine definition must match those of the Java method according to the
table below:

SMALLINT short or Short

INT int or Integer

BIGINT long or Long

NUMERIC or DECIMAL BigDecimal

FLOAT or DOUBLE double or Double

CHAR or VARCHAR String

DATE java.sql.Date

TIME java.sql.Time

TIME WITH TIME ZONE java.time.OffsetTime

TIMESTAMP java.sql.Timestamp

TIMESTAMP WITH TIME ZONE java.time.OffsetDateTime

INTERVAL MONTH java.time.Period

INTERVAL SECOND java.time.Duration

BINARY byte[]

VARBINARY byte[]

BOOLEAN boolean or Boolean

ARRAY of any type java.sql.Array

TABLE java.sql.ResultSet

For OUT and INOUT parameters of procedures Java arrays of the type given in the table above should be used as
parameters For example if the OUT parameter is defined as VARCHAR(10), it matches a Java parameter type defined
as String[].

If the specified Java method is not found or its parameters and return types do not match the definition, an exception
is raised. If more than one version of the Java method exists, then the one with matching parameter and return types
is found and registered. If two “equivalent” methods exist, the first one is registered. (This situation arises only when
a parameter is a primitive in one version and an Object in another version, e.g. long and java.lang.Long.).

When the Java method of an SQL/JRT routine returns a value, it should be within the size and precision limits defined
in the return type of the SQL-invoked routine, otherwise an exception is raised. Any difference in numeric scale is
ignored and corrected. For example, in the above example, the RETURNS CHAR VARYING(100) clause limits the
length of the strings returned from the Java method to 100. But if the number of digits after the decimal point (scale) of
a returned BigDecimal value is larger than the scale specified in the RETURNS clause, the decimal fraction is silently
truncated and no exception of warning is raised.

When the function is specified as RETURNS TABLE(...) the static Java method should return a
java.sql.ResultSet object. For an example of how to construct a org.hsqldb.jdbc.JDBCResultSet
for this purpose, see the source code for the org.hsqldb.jdbc.JDBCArray class. At the time of invocation,
the Java method is called and the returned ResultSet is transformed into an SQL table. The column types of the
declared TABLE must match those of the ResultSet, otherwise an exception is raised at the time of invocation.

SQL-Invoked Routines

216

Polymorphism

If two versions of the same SQL invoked routine with different parameter types are required, they can be defined to
point to the same method name or different method names, or even methods in different classes. In the example below,
the first two definitions refer to the same method name in the same class. In the Java class, the two static methods are
defined with corresponding method signatures.

In the third example, the Java function returns a result set and the SQL declaration includes RETURNS TABLE.

 CREATE FUNCTION an_hour_before_or_now(t TIME)
 RETURNS TIME
 NO SQL
 LANGUAGE JAVA PARAMETER STYLE JAVA
 EXTERNAL NAME 'CLASSPATH:org.npo.lib.nowLessAnHour'

 CREATE FUNCTION an_hour_before_or_now(t TIMESTAMP)
 RETURNS TIMESTAMP
 NO SQL
 LANGUAGE JAVA PARAMETER STYLE JAVA
 EXTERNAL NAME 'CLASSPATH:org.npo.lib.nowLessAnHour'

 CREATE FUNCTION testquery(i INTEGER)
 RETURNS TABLE(n VARCHAR(20), i INT)
 READS SQL DATA
 LANGUAGE JAVA
 EXTERNAL NAME 'CLASSPATH:org.hsqldb.test.TestJavaFunctions.getQueryResult'

In the Java class the definitions are as follows. Note the definition of the getQueryResult() method begins with
a java.sql.Connection parameter. This parameter is ignored when choosing the Java method. The parameter
is used to pass the current JDBC connection to the Java method.

 public static java.sql.Time nowLessAnHour(java.sql.Time value) {
 ...
 }

 public static java.sql.Timestamp nowLessAnHour(java.sql.Timestamp value)
 ...
 }

 public static ResultSet getQueryResult(Connection connection, int i) throws SQLException {
 Statement st = connection.createStatement();
 return st.executeQuery("SELECT * FROM T WHERE I < " + i);
 }

Java Language Procedures

Java procedures are defined similarly to functions. The differences are:

• The return type of the Java static method must be void.

• If a parameter is defined as OUT or INOUT, the corresponding Java static method parameter must be defined as
an array of the JDBC non-primitive type.

• When the Java static method is invoked, the OUT and INOUT arguments are passed to the Java method as a single-
element array.

• The static method can modify the OUT or INOUT argument by assigning a value to the sole element of the argument
array.

SQL-Invoked Routines

217

• A procedure can return one or more result sets. These are instantiated as JDBC ResultSet objects by the Java static
and returned in array arguments of the method. The signature of the Java method for a procedure that has N declared
parameters and returns M result sets has the following pattern. The N parameters corresponding to the signature of
the declared SQL procedure are defined first, followed by M parameters as ResultSet arrays.

When the SQL procedure is executed, the Java method is called with single element array arguments passed
for OUT and INOUT SQL parameters, and single element arrays of ResultSet for the returned ResultSet
objects. The Java method may call the execute() or executeQuery() methods of JDBC Statement or
PreparedStatement objects that are declared within the method and assign the ResultSet objects to the first element
of each ResultSet[] argument. For the returned ResultSet objects, the Java method should not call the methods of
java.sql.ResultSet before returning.

void methodName(<arg1>, ... <argN>, ResultSet[] r1, ..., ResultSet[] rM)

• If the procedure contains SQL statements, only statements for data access and manipulation are allowed. The Java
method should not perform commit or rollback. The SQL statements should not change the session settings and
should not include statements that create or alter tables or other database objects. These rules are generally enforced
by the engine, but additional enforcement may be added in future versions

An example of a procedure definition, together with its Java signature, is given below. This procedure is the SQL/JRT
version of the example discussed above for SQL/PSM.

 CREATE PROCEDURE get_customer(IN id INT, OUT firstname VARCHAR(50), OUT lastname VARCHAR(50))
 READS SQL DATA
 LANGUAGE JAVA
 EXTERNAL NAME 'CLASSPATH:org.hsqldb.test.Test01.getCustomerProcedure'

 public static void getCustomerProcedure(int id, String[] firstn, String[] lastn)
 throws java.sql.SQLException {
 firstn[0] = somevalue; // parameter out value is assigned
 lastn[0] = somevalue; // parameter out value is assigned
 }

In the next example a procedure is defined to return a result set. The signature of the Java method is also given. The
Java method assigns a ResultSet object to the zero element of the result parameter. The result parameter is always the
last one and is declared after the normal IN and OUT parameters.

 CREATE PROCEDURE new_customer(firstname VARCHAR(50), lastname VARCHAR(50))
 MODIFIES SQL DATA
 LANGUAGE JAVA
 DYNAMIC RESULT SETS 1
 EXTERNAL NAME 'CLASSPATH:org.hsqldb.test.Test01.newCustomerProcedure'

 public static void newCustomerProcedure(String firstn, String lastn,
 ResultSet[] result) throws java.sql.SQLException {
 result[0] = someresultset; // dynamic result set is assigned
 }

You may want to return your own data in the ResultSet that is returned from an SQL/JRT procedure or
function. The org.hsqldb.jdbc.JDBCResultSet has two static factory methods that return instances of the
JDBCResultSetBasic class. Refer to the source code to see how you can use this class in your Java static methods.
You can use the org.hsqldb.jdbc.JDBCArrayBasic class to create a JDBC Array in your Java static method.
This class also includes code to construct a JDBCResultSetBasic instance.

Java language procedures SQL/JRT are used in an identical manner to SQL/PSM routines. See the section under
SQL/PSM routines, Returning Data From Procedures, on how to use the JDBC CallableStatement interface to call the
procedure and to get the OUT and INOUT arguments and to use the ResultSet objects returned by the procedure.

SQL-Invoked Routines

218

Java Static Methods
The static methods that are used for procedures and functions must be declared in a public class. The methods must
be declared as public static. For functions, the method return type must be one of the JDBC supported types. The IN
parameters of the method must be declared as one of the supported types. The OUT and INOUT parameters must
be declared as Java arrays of supported types. If the SQL definition of a function includes RETURNS NULL ON
NULL INPUT, then the IN parameters of the Java static function can be int or long primitives, otherwise, they must
be Integer or Long. The declared Java arrays for OUT and INOUT parameters for SQL INTEGER or BIGINT must
be Integer[] or Long[] respectively.

If the SQL definition of the routine includes NO SQL, then no JDBC method call is allowed to execute in the method
body. Otherwise, a JDBC Connection can be used within the Java method to access the database. If the definition
includes CONTAINS SQL, then no table data can be read. If the definition includes READS SQL DATA, then no
table data can be modified. If the definition includes MODIFIES SQL DATA, then data can be modified. In all modes,
it is not allowed to execute DDL statements that change the schema definition.

It is possible to use DECLARE LOCAL TEMPORARY TABLE in a Java method, as this is in the session scope.

There are two ways to use the JDBC Connection object.

1. Define the Java method with a Connection parameter as the first parameter. This parameter is "hidden" and only
visible to the engine. The rest of the parameters, if any, are used to choose the method according to the required
types of parameters.

2. Use the SQL/JRT Standard "jdbc:default:connection" method. With this approach, the Java method
does not include a Connection parameter. In the method body, the connection is established with a method call to
DriverManager, as in the example below:

Connection con = DriverManager.getConnection("jdbc:default:connection");

Both methods return a connection that is based on the current session. This connection has some extra properties, for
example, the Close() method does not actually close it.

An example of an SQL PROCEDURE with its Java method definition is given below. The CREATE PROCEDURE
statement is the same with or without the Connection parameter:

 CREATE PROCEDURE proc1(IN P1 INT, IN P2 INT, OUT P3 INT)
 SPECIFIC P2 LANGUAGE JAVA DETERMINISTIC MODIFIES SQL DATA EXTERNAL NAME
 'CLASSPATH:org.hsqldb.test.TestStoredProcedure.procTest2'");

In the first example, the "jdbc:default:connection" method is used. In the second example, a connection
parameter is used

 public static void procTest2(int p1, int p2,
 Integer[] p3) throws java.sql.SQLException {

 Connection conn =
 DriverManager.getConnection("jdbc:default:connection");
 java.sql.Statement stmt = conn.createStatement();

 stmt.execute("INSERT INTO MYTABLE VALUES(" + p1 + ",'test1')");
 stmt.execute("INSERT INTO MYTABLE VALUES(" + p2 + ",'test2')");

 java.sql.ResultSet rs = stmt.executeQuery("select * from MYTABLE");
 java.sql.ResultSetMetaData meta = rs.getMetaData();

 int cols = meta.getColumnCount();
 p3[0] = Integer.valueOf(cols);

SQL-Invoked Routines

219

 rs.close();
 stmt.close();
 }

// alternative declaration with Connection parameter
// public static void procTest2(Connection conn, int p1, int p2,
// Integer[] p3) throws java.sql.SQLException {

When the stored procedure is called by the user's program, the value of the OUT parameter can be read after the call.

 // a CallableStatement is used to prepare the call
 // the OUT parameter contains the return value
 CallableStatement c = conn.prepareCall("call proc1(1,2,?)");
 c.execute();
 int value = c.getInt(1);

Legacy Support
The legacy HyperSQL statement, CREATE ALIAS <name> FOR <fully qualified Java method
name> is no longer supported directly. It is supported when importing databases and translates to a special CREATE
FUNCTION <name> statement that creates the function in the PUBLIC schema.

The direct use of a Java method as a function is still supported but deprecated. It is internally translated to a special
CREATE FUNCTION statement where the name of the function is the double quoted, fully qualified name of the
Java method used.

Securing Access to Classes and Routines
By default, the static methods of any class that is on the classpath are available to be used. This can compromise security
in some systems. The optional Java system property hsqldb.method_class_names allows preventing access to
classes other than java.lang.Math or specifying a semicolon-separated list of allowed classes. A property value
that ends with .* is treated as a wild card and allows access to all class or method names formed by substitution of
the * (asterisk).

In the example below, the property has been included as an argument to the Java command.

 java -Dhsqldb.method_class_names="org.me.MyClass;org.you.YourClass;org.you.lib.*" [the rest of
 the command line]

The above example allows access to the methods in the two classes: org.me.MyClass and
org.you.YourClass together with all the classes in the org.you.lib package. Note that if the property is not
defined, no access control is performed at this level.

The user who creates a Java routine must have the relevant access privileges on the tables that are used inside the
Java method.

Once the routine has been defined, the normal database access control applies to its user. The routine can be executed
only by those users who have been granted EXECUTE privileges on it. Access to routines can be granted to users with
GRANT EXECUTE or GRANT ALL. For example, GRANT EXECUTE ON myroutine TO PUBLIC.

Warning
The definition of SQL/JRT routines referencing the user's Java static methods is stored in the .script file of the database.

If the database is opened in a Java environment that does not have access to the referenced Java static methods on
its classpath, the SQL/JRT routines are not created when the database is opened. When the database is closed, the
routine definitions are lost.

SQL-Invoked Routines

220

There is a workaround to prevent opening the database when the static methods are not on the classpath. You can create
an SQL/PSM procedure which calls all the SQL/JRT functions and procedures in your database. The calls should have
the necessary dummy arguments. This procedure will fail to be created when the referenced methods are not accessible
and will return "Error in script file". There is no need ever to execute the procedure. However, to avoid accidental use,
you can ensure that it does not execute the SQL/JRT routines by adding a line such as IF TRUE THEN SIGNAL
SQLSTATE '45000'; before any references to the SQL/JRT routines.

User-Defined Aggregate Functions
HyperSQL adds an extension to the SQL Standard to allow user-defined aggregate functions. A user-defined aggregate
function has a single parameter when it is used in SQL statements. Unlike the predefined aggregate functions, the
keyword DISTINCT cannot be used when a user-defined aggregate function is invoked. Like all user-defined functions,
an aggregate function belongs to a schema and can be polymorphic (with multiple function definitions with the same
name but different parameter types).

A user-defined aggregate function can be used in SQL statements where a predefined aggregate function is allowed.

Definition of Aggregate Functions
An aggregate function is always defined with 4 parameters. The first parameter is the parameter that is used when
the function is invoked in SQL statements, the rest of the parameter are invisible to the invoking SQL statement. The
type of the first parameter is user defined. The type of the second parameter must be BOOLEAN. The third and fourth
parameters have user-defined types and must be defined as INOUT parameters. The defined return type of the function
determines the type of the value returned when the function is invoked.

CREATE AGGREGATE FUNCTION

user defined aggregate function definition

Aggregate function definition is similar to normal function definition and has the mandatory <returns clause>.
The BNF is given below.

<user defined aggregate function> ::= CREATE AGGREGATE FUNCTION <schema qualified
routine name> <SQL aggregate parameter declaration list> <returns clause>
<routine characteristics> <routine body>

The parameter declaration list BNF is given below. The type of the first parameter is used when the function is invoked
as part of an SQL statement. When multiple versions of a function are required, each version will have the first
parameter of a different type.

<SQL aggregate declaration list> ::= <left paren> [IN] [<SQL parameter name>]
<parameter type> <comma> [IN] [<SQL parameter name>] BOOLEAN <comma> INOUT
[<SQL parameter name>] <parameter type> <comma> INOUT [<SQL parameter name>]
<parameter type> <right paren>

The return type is user defined. This is the type of the resulting value when the function is called. Usually an aggregate
function is defined with CONTAINS SQL, as it normally does not read the data in database tables, but it is possible
to define the function with READS SQL DATA and access the database tables.

When a SQL statement that uses the aggregate function is executed, HyperSQL invokes the aggregate function, with
all the arguments set, once per each row in order to compute the values. Finally, it invokes the function once more
to return the final result.

In the computation phase, the first argument is the value of the user argument as specified in the SQL statement,
computed for the current row. The second argument is the boolean FALSE. The third and fourth argument values can

SQL-Invoked Routines

221

have any type and are initially null, but they can be updated in the body of the function during each invocation. The
third and fourth arguments act as registers and hold their values between invocations. The return value of the function
is ignored during the computation phase (when the second parameter is FALSE).

After the computation phase, the function is invoked once more to get the final result. In this invocation, the first
argument is NULL and the second argument is boolean TRUE. The third and fourth arguments hold the values they
held at the end of the last invocation. The value returned by the function in this invocation is used as the result of the
aggregate function computation in the invoking SQL statement. In SQL queries with GROUP BY, the call sequence
is repeated separately for each separate group.

SQL PSM Aggregate Functions

The example below features a user-defined version of the Standard AVG(<value expression>) aggregate
function for INTEGER input and output types. This function behaves differently from the Standard AVG function as it
returns 0 when all the input values are null. In the computation phase, each aggregated value X is added to the ADDUP
argument and the COUNTER argument is incremented. When the computation is complete, the function is called with
FLAG set to TRUE to get the result of the computation, which is ADDUP divided by COUNTER.

 CREATE AGGREGATE FUNCTION udavg(IN x INTEGER, IN flag BOOLEAN, INOUT addup BIGINT, INOUT counter
 INT)
 RETURNS INTEGER
 CONTAINS SQL
 BEGIN ATOMIC
 IF flag THEN
 RETURN addup / counter;
 ELSE
 SET counter = COALESCE(counter, 0) + 1;
 SET addup = COALESCE(addup, 0) + COALESCE(x, 0);
 RETURN NULL;
 END IF;
 END

The user-defined aggregate function is used in a select statement in the example below. Only the first parameter is
visible and utilised in the select statement.

 SELECT udavg(id) FROM customers GROUP BY lastname;

In the example below, the function returns an array that contains all the values passed for the aggregated column.
The first iteration creates an array with the first value, which is appended with a new value in each iteration. For
use with longer arrays, you can optimise the function by defining a larger array in the first iteration, and using the
TRIM_ARRAY function on the RETURN to cut the array to size. This function is similar to the built-in ARRAY_AGG
function

 CREATE AGGREGATE FUNCTION array_aggregate(IN val VARCHAR(100), IN flag boolean, INOUT buffer
 VARCHAR(100) ARRAY, INOUT counter INT)
 RETURNS VARCHAR(100) ARRAY
 CONTAINS SQL
 BEGIN ATOMIC
 IF flag THEN
 RETURN buffer;
 ELSE
 IF val IS NULL THEN RETURN NULL; END IF;
 IF counter IS NULL THEN SET counter = 0; END IF;
 SET counter = counter + 1;
 IF counter = 1 THEN SET buffer = ARRAY[val];
 ELSE SET buffer[counter] = val; END IF;
 RETURN NULL;
 END IF;

SQL-Invoked Routines

222

 END

The tables and data for the select statement below are created with the DatabaseManager or DatabaseManagerSwing
GUI apps. (You can find the SQL in the TestSelf.txt file in the zip). Part of the output is shown. Each row of the output
includes an array containing the values for the invoices for each customer.

 SELECT ID, FIRSTNAME, LASTNAME, ARRAY_AGGREGATE(CAST(INVOICE.TOTAL AS VARCHAR(100)))
 FROM customer JOIN INVOICE ON ID =CUSTOMERID
 GROUP BY ID, FIRSTNAME, LASTNAME

 11 Susanne Karsen ARRAY['3988.20']
 12 John Peterson ARRAY['2903.10','4382.10','4139.70','3316.50']
 13 Michael Clancy ARRAY['6525.30']
 14 James King ARRAY['3665.40','905.10','498.00']
 18 Sylvia Clancy ARRAY['634.20','4883.10']
 20 Bob Clancy ARRAY['3414.60','744.60']

In the example below, the function returns a string that contains the comma-separated list of all the values passed for
the aggregated column. This function is similar to the built in GROUP_CONCAT function.

 CREATE AGGREGATE FUNCTION group_concatenate
 (IN val VARCHAR(100), IN flag BOOLEAN, INOUT buffer VARCHAR(1000), INOUT counter INT)
 RETURNS VARCHAR(1000)
 CONTAINS SQL
 BEGIN ATOMIC
 IF FLAG THEN
 RETURN BUFFER;
 ELSE
 IF val IS NULL THEN RETURN NULL; END IF;
 IF buffer IS NULL THEN SET BUFFER = ''; END IF;
 IF counter IS NULL THEN SET COUNTER = 0; END IF;
 IF counter > 0 THEN SET buffer = buffer || ','; END IF;
 SET buffer = buffer + val;
 SET counter = counter + 1;
 RETURN NULL;
 END IF;
 END

The same tables and data as for the previous example is used. Part of the output is shown. Each row of the output is
a comma-separated list of names.

 SELECT group_concatenate(firstname || ' ' || lastname) FROM customer GROUP BY lastname

 Laura Steel,John Steel,John Steel,Robert Steel
 Robert King,Robert King,James King,George King,Julia King,George King
 Robert Sommer,Janet Sommer
 Michael Smith,Anne Smith,Andrew Smith
 Bill Fuller,Anne Fuller
 Laura White,Sylvia White
 Susanne Clancy,Michael Clancy,Sylvia Clancy,Bob Clancy,Susanne Clancy,John Clancy

Java Aggregate Functions
A Java aggregate function is defined similarly to PSM functions, apart from the routine body, which is defined as
EXTERNAL NAME ... The Java function signature must follow the rules for both nullable and INOUT parameters,
therefore:

No argument is defined as a primitive or primitive array type. This allows nulls to be passed to the function. The second
and third arguments must be defined as arrays of the JDBC non-primitive types listed in the table in the previous
section.

In the example below, a user-defined aggregate function for geometric mean is defined.

SQL-Invoked Routines

223

 CREATE AGGREGATE FUNCTION geometric_mean(IN val DOUBLE, IN flag BOOLEAN, INOUT register DOUBLE,
 INOUT counter INT)
 RETURNS DOUBLE
 NO SQL
 LANGUAGE JAVA
 EXTERNAL NAME 'CLASSPATH:org.hsqldb.test.Test01.geometricMean'

The Java function definition is given below:

 public static Double geometricMean(Double in, Boolean flag,
 Double[] register, Integer[] counter) {
 if (flag) {
 if (register[0] == null) { return null; }
 double a = register[0].doubleValue();
 double b = 1 / (double) counter[0];
 return Double.valueOf(java.lang.Math.pow(a, b));
 }
 if (in == null) { return null; }
 if (in.doubleValue() == 0) { return null; }
 if (register[0] == null) {
 register[0] = in;
 counter[0] = Integer.valueOf(1);
 } else {
 register[0] = Double.valueOf(register[0].doubleValue() * in.doubleValue());
 counter[0] = Integer.valueOf(counter[0].intValue() + 1);
 }
 return null;
 }

In a select statement, the function is used exactly like the built-in aggregate functions:

 SELECT geometric_mean(age) FROM FROM customer

224

Chapter 10. Triggers

Fred Toussi, The HSQL Development Group
$Revision: 3042 $

Copyright 2010-2022 Fred Toussi. Permission is granted to distribute this document without any alteration
under the terms of the HSQLDB license. Additional permission is granted to the HSQL Development Group
to distribute this document with or without alterations under the terms of the HSQLDB license.
2022-10-20

Overview
Trigger functionality first appeared in SQL:1999. Triggers embody the live database concept, where changes in SQL
data can be monitored and acted upon. This means each time a DELETE, UPDATE or INSERT is performed, additional
actions are taken by the declared triggers. SQL Standard triggers are imperative while the relational aspects of SQL
are declarative. Triggers allow performing an arbitrary transformation of data that is being updated or inserted, or to
prevent insert, updated or deletes, or to perform additional operations.

Some bad examples of SQL triggers in effect enforce an “integrity constraint” which would better be expressed as a
CHECK constraint. A trigger that causes an exception if the value inserted in a column is negative is such an example.
A check constraint that declares CHECK VALUE >= 0 (declarative) is a better way of expressing an integrity
constraint than a trigger that throws an exception if the same condition is false.

Usage constraints cannot always be expressed by SQL’s integrity constraint statements. Triggers can enforce these
constraints. For example, it is not possible to use a check constraint to prevent data inserts or deletes on weekends. A
trigger can be used to enforce the time when each operation is allowed.

A trigger is declared to activate when an UPDATE, INSERT or DELETE action is performed on a table. These actions
may be direct or indirect. Indirect actions may arise from CASCADE actions of FOREIGN KEY constraints, or from
data change statements performed on a VIEW that is based on the table that in.

It is possible to declare multiple triggers on a single table. The triggers activate one by one according to the order in
which they were defined. HyperSQL supports an extension to the CREATE TRIGGER statement, which allows the
user to specify the execution order of the new trigger.

A row level trigger allows access to the deleted or inserted rows. For UPDATE actions there is both an old and new
version of each row. A trigger can be specified to activate before or after the action has been performed.

BEFORE Triggers

A trigger that is declared as BEFORE DELETE cannot modify the deleted row. In other words, it cannot decide to
delete a different row by changing the column values of the row. A trigger that is declared as BEFORE INSERT and
BEFORE UPDATE can modify the values that are inserted into the database. For example, a badly formatted string
can be cleaned up by a trigger before INSERT or UPDATE.

BEFORE triggers cannot modify the other tables of the database. All BEFORE triggers can veto the action by throwing
an exception.

Because BEFORE triggers can modify the inserted or updated rows, all constraint checks are performed after the
execution of the BEFORE triggers. The checks include NOT NULL constraints, length of strings, CHECK constraints,
and FOREIGN key constraints.

Triggers

225

AFTER Triggers

AFTER triggers can perform additional data changes, for example inserting an additional row into a different table for
data audits or logs. These triggers cannot modify the rows that have been modified by the INSERT or UPDATE action.

INSTEAD OF Triggers

A trigger that is declared on a VIEW, is an INSTEAD OF trigger. This term means when an INSERT, UPDATE or
DELETE statement is executed with the view as the target, the trigger action is all that is performed, and no further
data change takes place on the view. The trigger action can include all the statements that are necessary to change
the data in the tables that underlie the view, or even other tables, such as audit tables. With the use of INSTEAD OF
triggers a read-only view can effectively become updatable or insertable-into.

An example of INSTEAD OF TRIGGERS is one that performs an INSERT, UPDATE or DELETE on multiple tables
that are used in the view.

Trigger Properties
A trigger is declared on a specific table or view. Various trigger properties determine when the trigger is executed
and how.

Trigger Event

The trigger event specifies the type of SQL statement that causes the trigger to execute. Each trigger is specified to
execute when an INSERT, DELETE or UPDATE takes place.

The event can be filtered by two separate means. For all triggers, the WHEN clause can specify a condition against
the rows that are the subject of the trigger, together with the data in the database. For example, a trigger can activate
when the size of a table becomes larger than a certain amount. Or it can activate when the values in the rows being
modified satisfy certain conditions.

An UPDATE trigger can be declared to execute only when certain columns are the subject of an update statement. For
example, a trigger declared as AFTER UPDATE OF (datecolumn) will activate only when the UPDATE statement
that is executed includes the column, datecolumn, as one of the columns specified in its SET statements.

Granularity

A statement level trigger is performed once for the executed SQL statement and is declared as FOR EACH
STATEMENT.

A row level trigger is performed once for each row that is modified during the execution of an SQL statement and is
declared as FOR EACH ROW. Note that an SQL statement can INSERT, UPDATE or DELETE zero or more rows.

If a statement does not apply to any row, then the trigger is not executed.

If FOR EACH ROW or FOR EACH STATEMENT is not specified, then the default is FOR EACH STATEMENT.

The granularity dictates whether the REFERENCING clause can specify OLD ROW, NEW ROW, or OLD TABLE,
NEW TABLE.

A trigger declared as FOR EACH STATEMENT can only be an AFTER trigger. These triggers are useful for logging
the event that was triggered.

Triggers

226

Trigger Action Time
A trigger is executed BEFORE, AFTER or INSTEAD OF the trigger event.

INSTEAD OF triggers are allowed only when the trigger is declared on a VIEW. With this type of trigger, the event
(SQL statement) itself is not executed, only the trigger.

BEFORE or AFTER triggers are executed just before or just after the execution of the event. For example, just before
a row is inserted into a table, the BEFORE trigger is activated, and just after the row is inserted, the AFTER trigger
is executed.

BEFORE triggers can modify the row that is being inserted or updated. AFTER triggers cannot modify rows. They
are usually used to perform additional operations, such as inserting rows into other tables.

A trigger declared as FOR EACH STATEMENT can only be an AFTER trigger.

References to Rows
If the old rows or new rows are referenced in the SQL statements in the trigger action, they must have names. The
REFERENCING clause is used to give names to the old and new rows. The clause, REFERENCING OLD | NEW
TABLE is used for statement level triggers. The clause, REFERENCING OLD | NEW ROW is used for row level
triggers. If the old rows or new rows are referenced in the SQL statements in the trigger action, they must have names.
In the SQL statements, the columns of the old or new rows are qualified with the specified names.

Trigger Condition
The WHEN clause can specify a condition for the columns of the row that is being changed. Using this clause you can
simply avoid unnecessary trigger activation for rows that do not need it.

For UPDATE trigger, you can specify a list of columns of the table. If a list of columns is specified, then if the UPDATE
statement does not change the columns with SET clauses, then the trigger is not activated at all.

Trigger Action in SQL
The trigger action specifies what the trigger does when it is activated. This is usually written as one or more SQL
statements.

When a row level trigger is activated, there is an OLD ROW, or a NEW ROW, or both. An INSERT statement supplies
a NEW ROW row to be inserted into a table. A DELETE statement supplies an OLD ROW be deleted. An UPDATE
statement supplies both OLD ROW and NEW ROW that represent the updated rows before and after the update. The
REFERENCING clause gives names to these rows, so that the rows can be referenced in the trigger action.

In the example below, a name is given to the NEW ROW and it is used both in the WHEN clause and in the trigger
action SQL to insert a row into a triglog table after each row insert into the testtrig table.

 CREATE TRIGGER trig AFTER INSERT ON testtrig
 REFERENCING NEW ROW AS newrow
 FOR EACH ROW WHEN (newrow.id > 1)
 INSERT INTO TRIGLOG VALUES (newrow.id, newrow.data, 'inserted')

In the example blow, the trigger code modifies the updated data if a condition is true. This type of trigger is useful
when the application does not perform the necessary checks and modifications to data. The statement block that starts
with BEGIN ATOMIC is similar to an SQL/PSM block and can contain all the SQL statements that are allowed in
an SQL/PSM block.

 CREATE TRIGGER t BEFORE UPDATE ON customer

Triggers

227

 REFERENCING NEW AS newrow FOR EACH ROW
 BEGIN ATOMIC
 IF LENGTH(newrow.firstname) > 10 THEN
 SET newrow.firstname = LOWER(newrow.firstname);
 END IF;
 END

Trigger Action in Java

A trigger action can be written as a Java class that implements the org.hsqldb.trigger.Trigger interface.
This interface has a single method which is called when the trigger is activated, either before or after the event. When the
method is called by the engine, it supplies the type of trigger as an int value defined by the interface(as type argument),
the name of the trigger (as trigName argument), the name of the table (as tabName argument), the OLD ROW (as
oldRow argument) and the NEW ROW (as newRow argument). The oldRow argument is null for row level INSERT
triggers. The newRow argument is null for row level DELETE triggers. For table level triggers, both arguments are
null (that is, there is no access to the data). The triggerType argument is one of the constants in the org.hsqldb.Trigger
interface which indicate the type of trigger, for example, INSERT_BEFORE_ROW or UPDATE_AFTER_ROW.

The Java class for the trigger can be reused for several triggers on different tables. The method code can distinguish
between the different tables and triggers using the supplied arguments and take appropriate action.

 fire (int type, String tabName, String table, Object oldRow[], Object newRow[])

The Java method for a synchronous trigger (see below) can modify the values in newRow in a BEFORE trigger. Such
modifications are reflected in the row that is being inserted or updated. Any other modifications are ignored by the
engine.

A Java trigger that uses an instance of org.hsqldb.trigger.Trigger has two forms, synchronous, or
asynchronous (immediate or queued). By default, or when QUEUE 0 is specified, the action is performed immediately
by calling the Java method. This is similar to SQL trigger actions.

When QUEUE n is specified with n larger than 0, the engine uses a separate thread to execute the Java method, using
a queue with the size n. For certain applications, such as real-time systems this allows asynchronous notifications to
be sent by the trigger event, without introducing delays in the engine. With asynchronous triggers, an extra parameter,
NOWAIT can be used in trigger definition. This overcomes the queue full condition. In this mode, old calls that are
still in the queue are discarded one by one and replaced with new calls.

Java row level triggers that are declared with BEFORE trigger action time can modify the row data. Triggers with
AFTER trigger action time can modify the database, e.g. insert new rows. If the trigger needs to access the database,
the same method as in Java Language Routines SQL/JRT can be used. The Java code should connect to the URL
"jdbc:default:connection" and use this connection to access the database.

For sample trigger classes and test code see, org.hsqldb.sample.TriggerSample,
org.hsqldb.test.TestTriggers, org.hsqldb.test.TriggerClass and the associated text script
TestTriggers.txt in the /testrun/hsqldb/ directory. In the example below, the trigger is activated only
if the update statement includes SET clauses that modify any of the specified columns (c1, c2, c3). Furthermore, the
trigger is not activated if the c2 column in the updated row is null.

 CREATE TRIGGER TRIGBUR BEFORE UPDATE OF c1, c2, c3 ON testtrig
 referencing NEW ROW AS newrow
 FOR EACH ROW WHEN (newrow.c2 IS NOT NULL)
 CALL "org.hsqldb.test.TriggerClass"

Java functions can be called from an SQL trigger. So it is possible to define the Java function to perform any external
communication that are necessary for the trigger, and use SQL code for checks and alterations to data.

 CREATE TRIGGER t BEFORE UPDATE ON customer

Triggers

228

 REFERENCING NEW AS newrow FOR EACH ROW
 BEGIN ATOMIC
 IF LENGTH(newrow.firstname) > 10 THEN
 CALL my_java_function(newrow.firstname, newrow.lastname);
 END IF;
 END

Trigger Creation
CREATE TRIGGER

trigger definition

<trigger definition> ::= CREATE TRIGGER <trigger name> <trigger action time>
<trigger event> ON <table name> [BEFORE <other trigger name>] [REFERENCING
<transition table or variable list>] <triggered action>

<trigger action time> ::= BEFORE | AFTER | INSTEAD OF

<trigger event> ::= INSERT | DELETE | UPDATE [OF <trigger column list>]

<trigger column list> ::= <column name list>

<triggered action> ::= [FOR EACH { ROW | STATEMENT }] [<triggered when
clause>] <triggered SQL statement>

<triggered when clause> ::= WHEN <left paren> <search condition> <right paren>

<triggered SQL statement> ::= <SQL procedure statement> | BEGIN ATOMIC { <SQL
procedure statement> <semicolon> }... END | [QUEUE <integer literal>] [NOWAIT]
CALL <HSQLDB trigger class FQN>

<transition table or variable list> ::= <transition table or variable>...

<transition table or variable> ::= OLD [ROW] [AS] <old transition variable
name> | NEW [ROW] [AS] <new transition variable name> | OLD TABLE [AS]
<old transition table name> | NEW TABLE [AS] <new transition table name>

<old transition table name> ::= <transition table name>

<new transition table name> ::= <transition table name>

<transition table name> ::= <identifier>

<old transition variable name> ::= <correlation name>

<new transition variable name> ::= <correlation name>

Trigger definition is a relatively complex statement. The combination of <trigger action time> and
<trigger event> determines the type of the trigger. Examples include BEFORE DELETE, AFTER UPDATE,
INSTEAD OF INSERT. If the optional [OF <trigger column list>] is specified for an UPDATE trigger,
then the trigger is activated only if one of the columns that is in the <trigger column list> is specified in
the UPDATE statement that activates the trigger.

If a trigger is FOR EACH ROW, which is the default option, then the trigger is activated for each row of the table that is
affected by the execution of an SQL statement. Otherwise, it is activated once only per statement execution. For FOR
EACH ROW triggers, there is an OLD and NEW state for each row. For UPDATE triggers, both OLD and NEW states

Triggers

229

exist, representing the row before the update, and after the update. For DELETE, triggers, there is only an OLD state.
For INSERT triggers, there is only the NEW state. If a trigger is FOR EACH STATEMENT, then a transient table is
created containing all the rows for the OLD state and another transient table is created for the NEW state.

The [REFERENCING <transition table or variable>] is used to give a name to the OLD and NEW
data row or table. This name can be referenced in the <SQL procedure statement> to access the data.

The optional <triggered when clause> is a search condition, similar to the search condition of a DELETE or
UPDATE statement. If the search condition is not TRUE for a row, then the trigger is not activated for that row.

The <SQL procedure statement> is limited to INSERT, DELETE, UPDATE and MERGE statements.

The <HSQLDB trigger class FQN> is a delimited identifier that contains the fully qualified name of a Java
class that implements the org.hsqldb.Trigger interface.

Early releases of HyperSQL version 2.x did not allow the use of OLD TABLE or NEW TABLE in statement level
triggers.

TRIGGERED SQL STATEMENT

triggered SQL statement

The <triggered SQL statement> has three forms.

The first form is a single SQL procedure statement. This statement can reference the OLD ROW and NEW ROW
variables. For example, it can reference these variables and insert a row into a separate table.

The second form is enclosed in a BEGIN ... END block and can include one or more SQL procedure statements. In
BEFORE triggers, you can include SET statements to modify the inserted or updated rows. In AFTER triggers, you
can include INSERT, DELETE and UPDATE statements to change the data in other database tables. SELECT and
CALL statements are allowed in BEFORE and AFTER triggers. CALL statements in BEFORE triggers should not
modify data.

The third form specifies a call to a Java method.

Two examples of a trigger with a block are given below. The block can include elements discussed in the SQL-
Invoked Routines chapter, including local variables, loops and conditionals. You can also raise an exception in such
blocks in order to terminate the execution of the SQL statement that caused the trigger to execute.

/* the trigger throws an exception if a customer with the given last name already exists */
 CREATE TRIGGER trigone BEFORE INSERT ON customer
 REFERENCING NEW ROW AS newrow
 FOR EACH ROW WHEN (newrow.id > 100)
 BEGIN ATOMIC
 IF EXISTS (SELECT * FROM CUSTOMER WHERE CUSTOMER.LASTNAME = NEW.LASTNAME) THEN
 SIGNAL SQLSTATE '45000' SET MESSAGE_TEXT = 'already exists';
 END IF;
 END

/* for each row inserted into the target, the trigger insert a row into the table used for
 logging */
 CREATE TRIGGER trig AFTER INSERT ON testtrig
 BEFORE othertrigger
 REFERENCING NEW ROW AS newrow
 FOR EACH ROW WHEN (newrow.id > 1)
 BEGIN ATOMIC
 INSERT INTO triglog VALUES (newrow.id, newrow.data, 'inserted');
 /* more statements can be included */
 END

Triggers

230

TRIGGER EXECUTION ORDER

trigger execution order

<trigger execution order> ::= BEFORE <other trigger name>

HyperSQL extends the SQL Standard to allow the order of execution of a trigger to be specified by using [BEFORE
<other trigger name>] in the definition. The newly defined trigger will be executed before the specified other trigger. If
this clause is not used, the new trigger is executed after all the previously defined triggers of the same scope (BEFORE /
AFTER, EACH ROW / EACH STATEMENT).

DROP TRIGGER

drop trigger statement

<drop trigger statement> ::= DROP TRIGGER <trigger name>

Destroy a trigger.

231

Chapter 11. System Management

Fred Toussi, The HSQL Development Group
$Revision: 6577 $

Copyright 2002-2022 Fred Toussi. Permission is granted to distribute this document without any alteration
under the terms of the HSQLDB license. Additional permission is granted to the HSQL Development Group
to distribute this document with or without alterations under the terms of the HSQLDB license.
2022-10-20

Modes of Operation
HyperSQL has many modes of operation and features that allow it to be used in very different scenarios. Levels of
memory usage, speed and accessibility by different applications are influenced by how HyperSQL is deployed.

Deployment Types
The decision to run HyperSQL as a separate server process or as an in-process database should be based on the
following:

• When HyperSQL is run as a server on a separate machine, it is isolated from hardware failures and crashes on the
hosts running the application.

• When HyperSQL is run as a server on the same machine, it is isolated from application crashes and memory leaks.

• Server connections are slower than in-process connections due to the overhead of streaming the data for each JDBC
call.

• You can access a Server from outside the main application and perform backups and other maintenance operations.

• You can reduce client/server traffic using SQL Stored procedures to reduce the number of JDBC execute calls.

• During development, it is better to use a Server with server.silent=false, which displays the statements
sent to the server on the console window.

• To improve speed of execution for statements that are executed repeatedly, reuse a parameterized PreparedStatement
for the lifetime of the connections.

Database Types
There are three types of database, mem:, file: and res:. The mem: type is stored all in memory and not persisted to file.
The file: type is persisted to file. The res: type is also based on files, but the files are loaded from the classpath, similar
to resource and class files. Changes to the data in file: databases are persisted, unless the database is readonly, or
files_readonly (using optional property settings). Changes to res: databases are not persisted.

Readonly Databases

A file: catalog can be made readonly permanently, or it can be opened as readonly. To make the database readonly, the
property, value pair, readonly=true can be added to the .properties file of the database. The SHUTDOWN
command must be used to close the database before making this change.

It is also possible to open a normal database as readonly. For this, the property can be included in the URL of the
first connection to the database.

System Management

232

With readonly databases, it is still possible to insert and delete rows in TEMP tables.

RES and Files Readonly Databases

There is another option which allows MEMORY tables to be writeable, but without persisting the changes at
SHUTDOWN. This option is activated with the property, value pair, files_readonly=true, which can be added
to the .properties file of the database, or included in the URL of the first connection to the database.

A res: catalog, is a set of database files on the classpath (inside a jar or alongside class files). The database is
opened with a URL in the form of jdbc:hsqldb:res:<database path>. These databases are always
files_readonly and have the same restrictions as files_readonly file: catalogs.

CACHED tables and LOBS in these catalogs are readonly. It is not possible to create new LOBs in these catalogs,
but you can use existing LOBs in new rows.

These options are useful for running application tests which operate on a predefined dataset.

Tables
In mem: catalogs, MEMORY tables without persistence are supported alongside TEXT tables with persistence but
CACHED table are not supported.

In file: and res: catalogs, MEMORY, CACHED and TEXT tables are all supported with persistence.

TEXT tables are designed for special applications where the data has to be in an interchangeable format, such as CSV
(comma separated values). Rows of data can be inserted into TEXT tables and existing rows can be updated or deleted.
For data that is updated a lot, it is better to use a MEMORY or CACHED table to improve reliability in case of system
crash. TEXT tables can also be used to open CSV or DSV (delimiter separated values) files in order to copy the data
into other types of table.

MEMORY tables and CACHED tables are generally used for data storage. The difference between the two is as
follows:

• The data for all MEMORY tables is read from the *.script file when the database is started and stored in memory.
In contrast the data for cached tables is not read into memory until the table is accessed. Furthermore, only part of
the data for each CACHED table is held in memory, allowing tables with more data than can be held in memory.

• When the database is shutdown in the normal way, all the data for MEMORY tables is written out to the disk. In
comparison, the data in CACHED tables that has changed is written out during operation and at shutdown.

• The size and capacity of the data cache for all the CACHED tables is configurable. This makes it possible to allow
all the data in CACHED tables to be cached in memory. In this case, speed of access is good, but slightly slower
than MEMORY tables.

• For normal applications it is recommended that MEMORY tables are used for small amounts of data, leaving
CACHED tables for large data sets. For special applications in which speed is paramount and a large amount of free
memory is available, MEMORY tables can be used for large tables as well.

• You can change the type of the table with the SET TABLE <table name> TYPE { CACHED |
MEMORY }statement.

Large Objects
HyperSQL supports dedicated storage and access to BLOB and CLOB objects. These objects can have huge sizes.
BLOB or CLOB is specified as the type of a column of the table. Afterwards, rows can be inserted into the table using
a PreparedStatement for efficient transfer of large LOB data to the database. In mem: catalogs, CLOB and BLOB data

System Management

233

is stored in memory. In file: catalogs, this data is stored in a single separate file which has the extension *.lobs.
The size of this file can grow to terabyte figures. By default, a minimum 32 KB is allocated to each LOB. You can
reduce this if your LOBs are generally smaller.

LOB data should be stored in the database using a JDBC PreparedStatement object. The streaming methods send the
LOB to the database in one operation as a binary or character stream. Inside the database, the disk space is allocated
as needed and the data is saved as it is being received. LOB data should be retrieved from the database using a JDBC
ResultSet method. When a streaming method is used to retrieve a LOB, it is retrieved in large chunks in a transparent
manner. LOB data can also be retrieved as String or byte[], but these methods use more memory and may not be
practical for large objects.

LOB data is not duplicated in the database when a lob is copied from one table to another. The disk space is reused
when a LOB is deleted and is no longer contained in any table. This happens only at the time of a CHECKPOINT.

With all-in-memory mem: databases, the memory space for deleted lobs is not reused by default, as there is no automatic
checkpoint. Automatic checkpoints can be activated by setting the LOG SIZE property to a value larger than zero.
When the accumulated size of deleted lobs reaches the LOG SIZE setting (in megabytes) an automatic checkpoint is
performed and the memory space is released.

By using a dedicated LOB store, HyperSQL achieves consistently high speeds (usually over 20MB / s) for both storage
and retrieval of LOBs.

There is an internal LOBS schema in the database to store the IDs, sizes and addresses of the LOBs (but not the actual
LOBS) in a few system tables. This schema is stored in the database as MEMORY tables. Therefore, the amount
of JVM memory should be increased when more than tens of thousands of LOBs are stored in the database. If your
database contains more than a few hundreds of thousands of LOBs and memory use becomes an issue, you can change
one or all LOB schema tables to CACHED tables. See statements below:

Example 11.1. Using CACHED tables for the LOB schema

 SET TABLE SYSTEM_LOBS.BLOCKS TYPE CACHED
 SET TABLE SYSTEM_LOBS.LOBS TYPE CACHED
 SET TABLE SYSTEM_LOBS.PARTS TYPE CACHED
 SET TABLE SYSTEM_LOBS.LOB_IDS TYPE CACHED

Deployment context

The files used for storing HyperSQL database data are all in the same directory. New files are always created and
deleted by the database engine. Two simple principles must be observed:

• The Java process running HyperSQL must have full privileges on the directory where the files are stored. This
include create and delete privileges.

• The file system must have enough spare room both for the 'permanent' and 'temporary' files. The default maximum
size of the *.log file is 50MB. The *.data file can grow to up to 64GB (more if the default has been increased).
The *.backup file can be up to the size of the *.data file. The *.lobs file can grow to several terabytes. The
temporary files created at the time of a SHUTDOWN can be equal in size to the *.script file and the *.data
file.

• In desktop deployments, virus checker programs may interfere with the creation and modification of database files.
You should exclude the directory containing the database files from virus checking.

Indexes and Query Speed
HyperSQL supports PRIMARY KEY, UNIQUE and FOREIGN KEY constraints, which can span multiple columns.

System Management

234

The engine creates indexes internally to support PRIMARY KEY, UNIQUE and FOREIGN KEY constraints: a unique
index is created for each PRIMARY KEY or UNIQUE constraint; a non-unique index is created for each FOREIGN
KEY constraint.

From version 2.6, you can extend the non-unique index for a FORIEGN KEY constraint to cover extra columns.
For example, if you have a FOREIGN KEY constraint defined on INVOICES(CUSTOMER_ID), you can add an
extra column such as INVOICE_DATE to the FOREIGN KEY index. This speeds up queries with conditions such as:
WHERE customer_id = 456 and invoice_date = '2020-02-02'. See the ALTER CONSTRAINT
statement for syntax.

HyperSQL allows you to define indexes on single or multiple columns with the CREATE INDEX statement. You
should not create duplicate indexes on the same column sets covered by constraints. This will result in unnecessary
memory and speed overheads. See the discussion on memory use in the Deployment Guide chapter for more
information.

Indexes are crucial for adequate query speed. When range or equality conditions are used e.g. SELECT ... WHERE
acol > 10 AND bcol = 0, an index should exist on one of the columns that has a condition. In this example,
the bcol column is the best candidate. HyperSQL always uses the best condition and index. If there are two indexes,
one on acol, and another on bcol, it will choose the index on bcol.

Queries always return results whether indexes exist or not, but they return much faster when an index exists. As a
rule of thumb, HSQLDB is capable of internal processing of queries at around 1,000,000 rows per second. Any query
that runs into several seconds is clearly accessing many thousands of rows. The query should be checked and indexes
should be added to the relevant columns of the tables if necessary. The EXPLAIN PLAN FOR <query> statement
can be used to see which indexes are used to process the query.

When executing a DELETE or UPDATE statement, the engine needs to find the rows that are to be deleted or updated.
If there is an index on one of the columns in the WHERE clause, it is often possible to start directly from the first
candidate row. Otherwise all the rows of the table have to be examined.

Indexes are even more important in joins between multiple tables. SELECT ... FROM t1 JOIN t2 ON t1.c1
= t2.c2 is performed by taking rows of t1 one by one and finding a matching row in t2. If there is no index on
t2.c2, then for each row of t1 all the rows of t2 must be checked. Whereas with an index on t2.c2, a matching row can
be found in a fraction of the time. If the query also has a condition on t1, e.g., SELECT ... FROM t1 JOIN t2
ON t1.c1 = t2.c2 WHERE t1.c3 = 4 then an index on t1.c3 would eliminate the need for checking all the
rows of t1 one by one, and will reduce query time to less than a millisecond per returned row.

So if t1 and t2 each contain 10,000 rows, the query without indexes involves checking 100,000,000 row combinations.
With an index on t2.c2, this is reduced to 10,000 row checks and index lookups. With the additional index on t2.c2,
only about 4 rows are checked to get the first result row.

Note that in HSQLDB an index on multiple columns can be used internally as an index on the first column in the
list. For example: CONSTRAINT name1 UNIQUE (c1, c2, c3) means there is the equivalent of CREATE
INDEX name2 ON atable(c1);. So you do not need to specify an extra index if you need one on the first
column of the list.

In HyperSQL, a multi-column index will speed up queries that contain joins or values on the first n columns of the
index. You need NOT declare additional individual indexes on those columns unless you use queries that search only
on a subset of the columns, excluding the first column. For example, rows of a table that has a PRIMARY KEY or
UNIQUE constraint on three columns or simply an ordinary index on those columns can be found efficiently when
values for all three columns, or the first two columns, or the first column, are specified in the WHERE clause. For
example, SELECT ... FROM t1 WHERE t1.c1 = 4 AND t1.c2 = 6 AND t1.c3 = 8 will use
an index on t1(c1,c2,c3) if it exists.

A multi-column index will not speed up queries on the second or third column only. The first column must be specified
in the JOIN .. ON or WHERE conditions.

System Management

235

Sometimes query speed depends on the order of the tables in the JOIN .. ON or FROM clauses. For example, the
second query below should be faster with large tables (provided there is an index on TB.COL3). The reason is that
TB.COL3 can be evaluated by index lookup and reduce the matching rows if it applies to the first table:

 -- TB is a very large table with only a few rows where TB.COL3 = 4

 SELECT * FROM TA JOIN TB ON TA.COL1 = TB.COL2 AND TB.COL3 = 4;
 SELECT * FROM TB JOIN TA ON TA.COL1 = TB.COL2 AND TB.COL3 = 4;

The general rule is to put first the table that has a narrowing condition on one of its columns. In certain cases, HyperSQL
reorders the joined tables if it is obvious that this will introduce a narrowing condition. This is discussed in the next
section.

HyperSQL features automatic, on-the-fly indexes for views and subselects that are used in a query.

Indexes are used when a LIKE condition searches from the start of the string.

Indexes are used for ORDER BY clauses if the same index is used for selection and ordering of rows. It is also possible
to force the use of index for ORDER BY.

Query Processing and Optimisation
HyperSQL performs "cost-base optimisation" to changes the order of tables in a query in order to optimise processing.
It computes and compares the approximate time (cost) it takes to execute the query with different table orders and
chooses the one with the least costs. This happens only when one of the tables has a narrowing condition and reordering
does not change the result of the query.

Indexes and Conditions
HyperSQL optimises queries to use indexes, for all types of range and equality conditions, including IS NULL and
NOT NULL conditions. Conditions can be in join or WHERE clauses, including all types of joins.

In addition, HyperSQL will use an index (if one exists) for IN conditions, whether constants, variable, or subqueries
are used on the right-hand side of the IN predicate. Multicolumn IN conditions can also use an index.

HyperSQL can always use indexes when several conditions are combined with the AND operator, choosing a condition
which can use an index. This now extended to all equality conditions on multiple columns that are part of an index.

HyperSQL will also use indexes when several conditions are combined with the OR operator and each condition can
use an index (each condition may use a different index). For example, if a huge table has two separate columns for
first name and last name, and each of these columns has an index, a query such as the following example will use the
indexes and complete in a short time:

 -- TC is a very large table

 SELECT * FROM TC WHERE TC.FIRSTNAME = 'John' OR TC.LASTNAME = 'Smith' OR TC.LASTNAME =
 'Williams'

Each subquery is considered a separate SELECT statement and uses indexes when they are available.

In each SELECT statement, at least one index per table can be used if there is a query conditions that can use the
index. When conditions on a table are combined with the OR operator, and each condition can use an index, multiple
indexes per table are used.

Indexes and Operations
HyperSQL optimises simple row count queries in the form of SELECT COUNT(*) FROM <table> and returns
the result immediately (this optimisation does not take place in MVCC mode).

System Management

236

HyperSQL can use an index on a column for SELECT MAX(<column>) FROM <table> and SELECT
MIN(<column>) FROM <table> queries. There should be an index on the <column> and the query can have a
WHERE condition on the same column. In the example below the maximum value for the TB.COL3 below 1000000
is returned.

 SELECT MAX(TB.COL3) FROM TB WHERE TB.COL < 1000000

HyperSQL can use an index for simple queries containing DISTINCT or GROUP BY to avoid checking all the rows
of the table. Note that indexes are always used if the query has a condition, regardless of the use of DISTINCT or
GROUP BY. This particular optimisation applies to cases in which all the columns in the SELECT list are from the
same table and are covered by a single index, and any join or query condition uses this index.

For example, with the large table below, a DISTINCT or GROUP BY query to return all the last names, can use an the
index on the TC.LASTNAME column. Similarly, a GROUP BY query on two columns can use an index that covers
the two columns.

 -- TC is a very large table

 SELECT DISTINCT LASTNAME FROM TC WHERE TC.LASTNAME > 'F'
 SELECT STATE, LASTNAME FROM TC GROUP BY STATE, LASTNAME

Indexes and ORDER BY, OFFSET and LIMIT

HyperSQL can use an index on an ORDER BY clause if all the columns in ORDER BY are in a single-column or
multi-column index (in the exact order). This is important if there is a LIMIT n (or FETCH n ROWS ONLY) clause.
In this situation, the use of index allows the query processor to access only the number of rows specified in the LIMIT
clause, instead of building the whole result set, which can be huge. This also works for joined tables when the ORDER
BY clause is on the columns of the first table in a join. Indexes are used in the same way when ORDER BY ... DESC
is specified in the query. Note that unlike some other RDBMS, HyperSQL does not need or create DESC indexes. It
can use any ordinary, ascending index for ORDER BY ... DESC.

If there is an equality or range condition (e.g. EQUALS, GREATER THAN) condition on the columns specified in
the ORDER BY clause, the index is still used.

In the two examples below, the index on TA.COL3 is used and only up to 1000 rows are processed and returned.

 -- TA is a very large table with an index on TA.COL3

 SELECT * FROM TA JOIN TB ON TA.COL2 = TB.COL1 WHERE TA.COL3 > 40000 ORDER BY TA.COL3 LIMIT 1000;
 SELECT * FROM TA JOIN TB ON TA.COL2 = TB.COL1 WHERE TA.COL3 > 40000 AND TA.COL3 < 100000 ORDER
 BY TA.COL3 DESC LIMIT 1000;

But if the query contains a condition on another indexed column in the table, this may take precedence and no index
may be used for ORDER BY. In this case USING INDEX can be added to the end of the query to force the use of
the index for the LIMIT operation.

In the example below there is an index on TA.COL1 as well as the index on TA.COL3. Normally the index on
TA.COL1 is used, but the USING INDEX hint results in the index on TB.COL3 to be used for selecting the first 1000
rows. Supposing there are 10 million rows in the table and 1 million rows have COL1 = 'SENT', when the index
on COL1 is used, one million rows are read before ORDER BY and LIMIT are applied. But with the USING INDEX
approximately about 10 times the 1000 rows are read and filtered until the 1000 row target is reached.

 -- TA is a very large table with an index on TA.COL3 and a separate index on TA.COL1

 SELECT * FROM TA JOIN TB ON TA.COL2 = TB.COL1 WHERE TA.COL1 = 'SENT' ORDER BY TA.COL3 LIMIT 1000
 USING INDEX;

System Management

237

ACID, Persistence and Reliability
HyperSQL's persistence mechanism has proven reliable, as the last critical issue was fixed in 2008.

There are further enhancements in the latest version.

• More extensive locking mechanism has been added to code to support multithreaded access.

• Incremental backup (an internal mechanism for crash protection) allows fast checkpoint and shutdown.

• All files are synced at checkpoints and also just before closing.

• The data file is enlarged in block increments

• The NIO file access implementation has been improved

Persistence relies on the JVM, the operating system, and the computer hardware. A database system like HyperSQL
can perform millions of read and write operations in an hour. As system hardware and software can go wrong, it is
impossible to achieve zero failure rate. Therefore, regular backups are recommended. HyperSQL has built-in database
backup and restore features, discussed elsewhere in this chapter.

A note regarding the NIO file access implementation: This implementation applies only to CACHED table data in the
.data file. Other files are not accessed via NIO. There has been an issue with some JVM implementations of nio not
releasing the file buffers after they were closed. HyperSQL uses workarounds which are recommended for Sun JVMs
and later OpenJDK ones. This does not apply to other JVMs. In such environments, it is therefore recommended to
stress test the CHECKPOINT DEFRAG operation and the shutting down and restarting the database inside the same
Java process extensively with NIO. Use of NIO is not essential and can be turned off if necessary.

Atomicity, Consistency, Isolation, Durability

Atomicity means a transaction either fails without changing the data, or succeeds. HyperSQL ensures atomicity both
during operations and in the event of a system crash.

Consistency means all the implicit and explicit integrity constraints are always enforced. HyperSQL always enforces
the constraints and at the same time does not allow unenforceable constraints (illegal forms of CHECK constraints)
to be created.

Isolation means transactions do not interfere with each other. HyperSQL enforces isolation according to strict rules
of the database isolation model (MVCC or LOCKS).

Durability means a committed transaction is protected in case of a system crash. HyperSQL ensures durability
according to the setting for WRITE DELAY MILLIS. A zero delay setting results in an FileDescriptor#sync() call
each time a transaction commits. A timed delay means the FileDescriptor#sync() call is executed in the given intervals
and only the last transactions committed in the time interval may be lost. The default time interval is 0.5 second. The
sync() call is also made at all critical points, including when a file is about to be closed. Durability of files requires
a reliable JVM and disk storage system that stores the data safely with a sync() call. In practice, many systems are
generally reliable in this respect.

System Operations

A database is opened when the first connection is successfully made. It remains open until the SHUTDOWN command
is issued. If the connection property shutdown=true is used for the first connection to the database, the database is
shutdown when the last connection is closed. Otherwise the database remains open and will accept the next connection
attempt.

System Management

238

The SHUTDOWN command shuts down the database properly and allows the database to be reopened quickly. This
command may take some seconds as it saves all the modified data in the .script and .data files. Variants of
SHUTDOWN such as SHUTDOWN COMPACT and SHUTDOWN SCRIPT can be used from time to time to reduce the
overall size of the database files. Another variant is SHUTDOWN IMMEDIATELY which ensures all changes to data
are stored in the .log file but does not save the changes in .script and .data files. The shutdown is performed
quickly but the database will take much longer to reopen.

During the lifetime of the database the checkpoint operation may be performed from time to time. The SET FILES
LOG SIZE < value > setting and its equivalent URL property determine the frequency of automatic checkpoints.
An online backup also performs a checkpoint when the backup is not a hot backup. A checkpoint can be performed by
the user at any time using the CHECKPOINT statement. The main purpose of checkpoints is to reduce the total size of
database files and to allow a quick restart in case the database is closed without a proper shutdown. The CHECKPOINT
DEFRAG variant compacts the .data file in a similar way to SHUTDOWN COMPACT does. Obviously, this variant
takes much longer than a normal CHECKPOINT. A database setting allows a CHECKPOINT DEFRAG to be performed
automatically when wasted space in the .data file exceeds the specified percentage.

In a multi-user application, automatic or user-initiated checkpoints are delayed until all other sessions have
committed or rolled back. During a checkpoint, other sessions cannot access the database tables but can access the
INFORMATION_SCHEMA system tables.

Temporal System-Versioned Tables
HyperSQL 2.5 and later allows you to store data in temporal system-versioned tables. The additional syntax elements
for CREATE TABLE and ALTER TABLE allow creating system-versioned tables and adding system versioning to
existing tables. These are covered in the Schemas and Database Objects chapter. Only CACHED or MEMORY tables
can be system-versioned.

System versioning has three main uses.

1. During development and testing of applications, system-versioning keeps all the changes made by a set of
integration tests. Correctness of the data change statements can be verified.

2. Retention of data for regulatory requirements can be safely managed by the database engine, without the need for
additional complexity in the application.

3. Time travel queries allow views of the data at any point in the past, as well as views of the changes over a given
period.

4. Replicated distributed databases with system versioning on all tables allow changes to data to be synchronized
between the replicas.

All DML statements that modify the table data see only the current rows of the table. SELECT statements can include
a FOR SYSTEM_TIME clause to access historic data in a given timestamp range. This is discussed in Data Access
and Change chapter.

Old historic rows can be removed up to a chosen point of time with a special form of the TRUNCATE statement. This
is covered in the Data Access and Change chapter.

An example of a system-versioned table follows:

Example 11.2. Creating a system-versioned table

 CREATE TABLE codedata (
 code CHAR(10) not null,
 id SMALLINT not null ,
 primary key (ID),

System Management

239

 PS TIMESTAMP GENERATED ALWAYS AS ROW START,
 PE TIMESTAMP GENERATED ALWAYS AS ROW END,
 PERIOD FOR SYSTEM_TIME(PS,PE)
) WITH SYSTEM VERSIONING

Replicated Databases
Replicated databases are databases with multiple copies in different locations that contain the same table structure and
data. With system-versioned tables, a set of replicas can be synchronized.

Data changes to a replica after a point of time can be written to a script. The script can then be applied to another
replica. See the syntax details of PERFORM SCRIPT statement in this chapter. The timestamp used for export is the
timestamp at the point of last synchronization. For example, if the first EXPORT occurs at TIMESTAMP '2020-10-01
10:10:10' and the script is later imported into the replica, the second EXPORT should use that timestamp to ensures
old histories that have already been exported are not exported again. The import will skip duplicates and there is no
harm in exporting from an earlier timestamp, except it will take longer to import.

 -- on one replica, the changes from the given UTC timestamp are exported to a file
 PERFORM EXPORT SCRIPT FOR DATABASE VERSIONING DATA FROM '2022-03-21 08:00:00' TO '/data/
diff_file'

 -- on another replica, the diff file is imported and the changes are merged into the database
 PERFORM IMPORT SCRIPT VERSIONING DATA FROM '/data/diff_file'

Synchronization of tables with BLOB and CLOB columns is not currently possible as the export script does not contain
the LOB data. This may be supported in a future version.

For a replica set where only one replica is updated and the others are only read, this method of replication has no
conflict. For replica sets where each replica is updated, the database schema and usage must account for this. During
import, when there is a conflicts, the conflicting change is not applied and is instead written to another file to be
reviewed.

Using Table Spaces
Data for all CACHED tables is stored in the .data file. With a new recommended setting, HyperSQL 2.5 and later
allocates separate blocks of the data file to different CACHED tables. This is recommended for all databases with a
data file larger than a few megabytes. This method has the following advantages:

• When a table is dropped, all its data allocation blocks are freed and become available for reuse.

• When old rows are deleted in bulk, the space is immediately released and reused.

• When many rows are updated or deleted over a long period, the disk space occupied by the old versions of the rows
is eventually freed.

The following statement should be executed once to start the table spaces for the whole database:

SET FILES SPACE TRUE

The alternative is to include the corresponding connection property on the JDBC connection URL that creates the
database. For example:

jdbc:hsqldb:file:<database path>;hsqldb.files_space=true

Then the statement below should be executed for each CACHED table that will have its own space:

SET TABLE <table name> NEW SPACE

System Management

240

If the above statement is not executed, the table is stored in common blocks shared by a number of tables.

If either of the above statements is executed again after the first time, it does not change any settings.

It is better to set any table that is known to grow larger than a few thousand rows its own space before any data is stored.

A database with table spaces uses a minimum of 4 to 6 megabytes for its data structures to keep track of file space use.
The size overhead is then about half a percent of the size of the .data file as it grows larger.

The size of the file block is 2MB when the hsqldb.cache_file_scale is the default 32 (the size doubles as
the scale doubles). It is possible to reduce the block size to 1MB for databases that contain many small tables that
use their own, dedicated spaces. The statement SET FILES SPACE 1 can be executed instead of SET FILES
SPACE TRUE for a reduced block size.

As the tables grow in size, more blocks are allocated to their spaces. These blocks are allocated from the freed file
blocks if there are any available. The INFORMATION_SCHEMA.SYSTEM_TABLESTATS provides information
on the space usage of table spaces. In this table, the SPACE_ID column contains the space id for the table. The value 1
is used for the space allocated by the system to its data structures. The value 7 is for tables that use the common space.

Conversion of existing databases to use table spaces is simple. If the SET FILES SPACE TRUE command is
executed when there are already some rows in any CACHED table, the change does not happen immediately. In this
case, the table spaces are created only when CHECKPOINT DEFRAG, SHUTDOWN COMPACT, or SHUTDOWN
SCRIPT is executed. Among these commands, CHECKPOINT DEFRAG will also automatically allocate a separate
space to each table that is larger than a certain size.

In a database with table spaces enabled, the SET TABLE <table name> NEW SPACE command immediately
applies a separate space to the table, whether it is empty or has data..

Checking Database Tables and Indexes

The integrity of the indexes and table data can be checked with a statement. This applies to CACHED tables only.
Individual tables or all tables can be checked.

 PERFORM CHECK TABLE PUBLIC.CUSTOMER INDEX [AND FIX]

 PERFORM CHECK ALL TABLE INDEX [AND FIX]

The command reads and compares all the rows and lists the size of each table and the size of each index on the table.
If an index is damaged, the list shows the number of rows that could be read as different from the number of rows in
the table. With large tables, it can take a long time to complete.

It is possible to execute the command with the addition of AND FIX to the end. If some indexes have been damaged
but at least one index on a table is undamaged, this should fix the problem and if the command is run again, it should
show no damage.

Backing Up and Restoring Database Catalogs
The database engine saves the files containing all the data in a file catalog when a shutdown takes place. It automatically
recovers from an abnormal termination and preserves the data when the catalog is opened next time. In an ideal
operating environment, where there is no OS crash, disk failure, bugs in code, etc., there would be no need to back up
a database. Backing up catalogs is an insurance policy against all sorts of misadventure that are not under the control
of the database engine.

System Management

241

The data for each catalog consists of up to 5 files in the same directory with the endings such as *.properties,
*.script, etc., as detailed in previous chapters.

HyperSQL features commands to back up the database files into a single .tar or .tar.gz file archive, or
alternatively as copies of the database files. The backup can be performed by a command given in a JDBC session if
the target database catalog is running, or on the command-line if the target catalog has been shutdown.

It is not recommended to back up the database file with an external file backup program while the database is running.
The resulting backup will probably be inconsistent and not useful for restoring the database

Making Online Backups

To back up a running catalog, obtain a JDBC connection and issue a BACKUP DATABASE command in SQL. In
its most simple form, the command format below will back up the database as a single .tar.gz file to the given
directory. This type of backup performs a checkpoint immediately before backing up the files.

 BACKUP DATABASE TO <directory name> BLOCKING [AS FILES]

The directory name must end with a slash to distinguish it as a directory, and the whole string must be in single quotes
like so: 'subdir/nesteddir/'.

Normal backup may take a long time with very large databases. Hot backup may be used in those situations. This type
of backup does not perform a checkpoint and allows access to the database while backup is in progress.

 BACKUP DATABASE TO <directory name> NOT BLOCKING [AS FILES]

If you add AS FILES to the statements, the database files are backed up as separate files in the directory, without any
gzip compression or tar archiving.

See the next section under Statements for details about the command and its options. See the sections below about
restoring a backup.

Offline Backup Utility Syntax

The DbBackup class is used from the command-line to make offline backups and to restore backups. Here is how
to see all options for DbBackup.

Example 11.3. Displaying DbBackup Syntax

 java -cp hsqldb.jar org.hsqldb.lib.tar.DbBackupMain

Making Offline Backups

To back up an offline catalog, the catalog must be in shut down state. You will run a Java command like this. In this
example, the database is named dbname and is in the dbdir directory. The backup is saved to a file named backup.tar
in the tardir directory.

Example 11.4. Offline Backup Example

 java -cp hsqldb.jar org.hsqldb.lib.tar.DbBackupMain --save tardir/backup.tar dbdir/dbname

where tardir/backup.tar is a file path to the *.tar or *.tar.gz file to be created in your file system, and
dbdir/dbname is the file path to the catalog file base name (in same fashion as in server.database.* settings
and JDBC URLs with catalog type file:.

System Management

242

Examining Backups

You can list the contents of backup tar files with DbBackup on your operating system command line, or with any
Pax-compliant tar or pax client (this includes GNU tar),

Example 11.5. Listing a Backup with DbBackup

 java -cp hsqldb.jar org.hsqldb.lib.tar.DbBackupMain --list tardir/backup.tar

You can also give regular expressions at the end of the command line if you are only interested in some of the file
entries in the backup. Note that these are real regular expressions, not shell globbing patterns, so you would use .
+script to match entries ending in "script", not *script.

You can examine the contents of the backup in their entirety by restoring the backup, as explained in the following
section, to a temporary directory.

Restoring a Backup

You use DbBackup on your operating system command line to restore a catalog from a backup.

Example 11.6. Restoring a Backup with DbBackup

 java -cp hsqldb.jar org.hsqldb.lib.tar.DbBackupMain --extract tardir/backup.tar dbdir

where tardir/backup.tar is a file path to the *.tar or *.tar.gz file to be read, and dbdir is the target directory
to extract the catalog files into. Note that dbdir specifies a directory path, without the catalog file base name. The
files will be created with the names stored in the tar file (and which you can see as described in the preceding section).
After restoring the database, you can connect to it as usual.

Encrypted Databases
HyperSQL supports encrypted databases. Encryption services use the Java Cryptography Extensions (JCE) and uses
the ciphers installed with the JRE. HyperSQL itself does not contain any cryptography code.

Four elements are involved in specifying the cryptography mode of operation.

• A cipher is identified by a transformation string of the form "algorithm/mode/padding" or simply "algorithm". Note
The latter form uses the provider default mode and padding.

• A key is represented as a hexadecimal string.

• An optional initialization vector, for modes of operation that use an IV, is represented as a hexadecimal string.

• An optional provider is the fully qualified class name of the cipher provider.

The parameters, including the name of the cipher and the key, are all specified in the database connection URL No
key or other parameter is stored in the database files.

Creating and Accessing an Encrypted Database

First, a key must be created for the desired cipher and configuration using an external tool, such as openssl, or by
calling the HyperSQL function CRYPT_KEY(<cipher spec>, <provider>). If the default provider (the built-in JVM
ciphers) is used, then NULL should be specified as the provider. The CRYPT_KEY function returns a hexadecimal

System Management

243

key. The function call can be made in any HyperSQL database, so long as the provider class is on the classpath. This
key can be used to create a new encrypted database. Calls to this function always return different keys, based on
generated random values.

As an example, a call to CRYPT_KEY('Blowfish', null) returned the string, '604a6105889da65326bf35790a923932'.
To create a new database with this key, the URL below is used:

jdbc:hsqldb:file:<database
path>;crypt_key=604a6105889da65326bf35790a923932;crypt_type=blowfish

HyperSQL works with any symmetric cipher and transformation that may be available from the JVM. Some modes of
operations require an initialization vector (IV) to be passed in as a hex string. This hex string can be generated using
an external tool, such as openssl, or randomly generated by the user.

jdbc:hsqldb:file:<database
path>;crypt_key=604a6105889da65326bf35790a923932;crypt_iv=9AB7A109507CD27BEADA2AE59BCEEF08;crypt_type=AES/
CBC/PKCS5Padding

The fourth property name is crypt_provider. This is specified only when the provider is not the default provider.

Note: Do not use these example crypt_key or crypt_iv values in production. Create your own random values.

The files that are encrypted include the .script, .data, .backup and .log files. From version 2.5, the .lobs
file is also encrypted by default and the blobs and clobs are both compressed and encrypted. You can override this with
the property crypt_lobs=false on the URL. Earlier versions of HSQLDB did not support encrypted lobs, and in
some versions the default for this property was false. You will need to set the property to false to open those databases.

Although the details of external tools are outside the scope of this document, openssl may be used to generate
sufficiently random keys and initialization vectors for a given crypt_type using the following syntax:

openssl enc -aes-128-cbc -k RANDOM_PASSPHRASE -P -md sha256

Speed Considerations

General operations on an encrypted database are performed the same as with any database. However, some operations
are significantly slower than with the equivalent clear text database. With MEMORY tables, there is no difference
to the speed of SELECT statements, but data change statements are slower. With CACHED tables, the speed of all
statements is slower.

Security Considerations

Security considerations for encrypted databases have been discussed at length in HyperSQL discussion groups.
Development team members have commented that encryption is not a panacea for all security needs. The following
issues should be taken into account:

• Encrypted files are relatively safe in transport, but because databases contain many repeated values and words,
especially known tokens such as CREATE, INSERT, etc., breaking the encryption of a database may be simpler
than an unknown file.

• Only the files are encrypted, not the memory image. Peeking into computer memory, while the database is open,
will expose the contents of the database.

• HyperSQL is open source. Someone who has the key, can compile and use a modified version of the program that
saves a full clear text dump of an encrypted database. Therefore, encryption is generally effective only when the
users who have access to the crypt key are trusted.

System Management

244

Monitoring Database Operations
Database operations can be monitored at different levels using internal HyperSQL capabilities or add-ons.

External Statement Level Monitoring

Statement level monitoring allows you to gather statistics about executed statements. HyperSQL is supported by
the monitoring tool JAMon (Java Application Monitor). JAMon is currently developed as the SourceForge project,
jamonapi.

JAMon works at the JDBC level. It can monitor and gather statistics on different types of executed statements or other
JDBC calls.

Early versions of JAMon were developed with HyperSQL and had to be integrated into HyperSQL at code level. The
latest versions can be added on as a proxy in a much simpler fashion.

Internal Statement Level Monitoring

The internally generated, individual SQL log for the database can be enabled with the SET DATABASE EVENT LOG
SQL LEVEL statement, described in this chapter. As all the executed statements are logged, there is a small impact
on speed. So you should only use this for debugging. Four levels of SQL logging are supported.

Internal Event Monitoring

HyperSQL can log important internal events of the engine. These events occur during the operation of the engine, and
are not always coupled with the exact type of statement being executed. Normal events such as opening and closing
of files, or errors such as OutOfMemory conditions are examples of logged events.

HyperSQL supports two methods of logging. One method is specific to the individual database and is managed
internally by HyperSQL. The other method is specific to JVM and is managed by a logging framework.

The internally-generated, individual log for the database can be enabled with the SET DATABASE EVENT LOG
LEVEL statement, described in this chapter. This method of logging is very useful for desktop application deployment,
as it provides an ongoing record of database operations.

Log4J and JDK logging

HyperSQL also supports log4J and JDK logging. The same event information that is passed to the internal log, is passed
to external logging frameworks. These frameworks are typically configured outside HyperSQL. The log messages
include the string "hsqldb.db." followed by the unique id (a 16 character string) of the database that generated the
message, so they can be identified in a multi-database server context.

The extent of logged messages is controlled with the SET DATABASE EXTERNAL EVENT LOG LEVEL statement,
described in this chapter.

As the default JDK logging framework has several shortcomings, HyperSQL can configures this logging framework
for better operation. If you want HyperSQL to configure the JDK logging framework, you should include the system
level property hsqldb.reconfig_logging=true in your environment.

Server Operation Monitoring

A Server or WebServer instance can be started with the property server.silent=false. This causes all the
connections and their executed statements to be printed to stdout as the statements are submitted to the server.

System Management

245

Database Security
HyperSQL has extensive security features which are implemented at different levels and covered in different chapters
of this guide.

1. The server can use SSL and IP address access control lists. See the HyperSQL Network Listeners (Servers) chapter.

2. You can define a system property to stop the database engine accessing the Java static functions that are on the
classpath, apart from a limited set that you allow. See Securing Access to Classes in the SQL-Invoked Routines
chapter.

3. You can define a system property to allow access to files on the file system outside the database directory and its
children. This access is only necessary if you use TEXT tables or want to load and save files directly to the file
system as BLOB or CLOB. See the Text Tables chapter.

4. The database files can be encrypted. Discussed in this chapter.

5. Within the database, the DBA privileges are required for system and maintenance jobs.

6. You can define users and roles and grant them access on different database objects. Each user has a password and is
granted a set of privileges. HyperSQL supports table level, column level, and row level privileges. See the Access
Control chapter.

7. You can define a password complexity check function for new and changed passwords. This is covered below
under Authentication Settings.

8. You can use external authentication such as LDAP instead of internally stored password to authenticate users for
each database. This is covered below under Authentication Settings.

HyperSQL security is multi-layered and avoids any loopholes to circumvent security. It is however the user's
responsibility to enable the required level of security.

Basic Security Recommendations
The default settings are generally adequate for embedded use of the database in single-user applications. For servers on
the host that are accessed from the same machine or accessed within a network, and especially for those accessed from
outside the network, additional security settings must be used. This is the minimum list of changes you need to make:

• Change the admin password. Change the admin name (the default is SA) as well for extra security.

• Create a non-admin user for normal database access and grant the required SELECT, INSERT, UPDATE and
DELETE privileges to this user. Connect with this user's credentials from the application.

• Set up SSL and IP address access control on the Server.

• Restrict the execution of multiple statements with SET DATABASE SQL RESTRICT EXEC TRUE .

• Backup the database regularly and store the backups in a different location than the machine running the Server.

Beyond Security Defaults
The default settings for server and web server do not use SSL or IP access control lists. These features are enabled
programmatically, or with the properties used to start the server.

The default settings allow a database user with the DBA role or with schema creation role to access static functions on
the classpath. You can disable this feature or limit it to specific classes and methods. This can be done programmatically
or by setting a system property when you start a server.

System Management

246

If access to specific static functions is granted, then these functions must be considered as part of the database program
and checked for any security flaws before inclusion in the classpath.

The default settings do not allow a user to access files outside the database directory. This access is for TEXT table
source files. You can override this programmatically or with a system property when you start a server.

The encryption of database file does not utilise any user-supplied information for encryption keys. This level of security
is outside the realm of users and passwords.

The first user for a new database has the DBA role. This user name was always SA in older versions of HyperSQL,
but not in the latest versions. The name of the first DBA user and its password can be specified when the database
is created by the first connection to the database. These settings are then stored in the database. You can also change
the name after creating the database.

The initial user with the DBA role should be used for admin purposes only. At least one additional role should be
created for normal database use in the application and at least one additional user should be created and granted this
role. The new role should not be given the DBA role. It can be given the CREATE_SCHEMA role, which allows it to
create and access multiple schemas. Alternatively, the user with the DBA role can create the schemas and their objects
and then grant specific privileges on the objects to the non-DBA role.

Authentication Control
Authentication is the mechanism that determines if a user can access the database at all. Once authentication is
performed, the authorization mechanism is used to determine which database objects the particular user can access.
The default authentication mechanism is password authentication. Each user is created with a password, which is
stored as a hash in the database and checked each time a new database connection is created.

Password Complexity Check

HyperSQL allows you to define a function that checks the quality of the passwords defined in the database. The
passwords are stored in the database. Each time a user connects, the user's name and password are checked against the
stored list of users and passwords. The connection attempt is rejected if there is no match.

External Authentication

You can use an external authentication mechanism instead of the internal authentication mechanism. HyperSQL allows
you to define a function that checks the combination of database unique name, user name, and password for each
connection attempt. The function can use external resources to authenticate the user. For example, a directory server
may be used. The password may be ignored if the external resource can verify the user's credential without it.

You can override external authentication for a user with the ALTER USER statement. See the Access Control chapter

Statements
System level statements are listed in this section. Statements that begin with SET DATABASE or SET FILES are for
properties that have an effect on the normal operation of HyperSQL. The effects of these statements are also discussed
in different chapters.

System Operations
These statements perform a system level action.

SHUTDOWN

shutdown statement

System Management

247

<shutdown statement> ::= SHUTDOWN [IMMEDIATELY | COMPACT | SCRIPT]

Shutdown the database. If the optional qualifier is not used, a normal SHUTDOWN is performed. A normal
SHUTDOWN ensures all data is saved correctly and the database opens without delay on next use.

SHUTDOWN Normal shutdown saves all the database files, then deletes the .log file (and
the .backup file in the default mode). This does the same thing as CHECKPOINT, but
closes the database when it completes. The database opens without delay on next used.

SHUTDOWN
IMMEDIATELY

Saves the *.log file and closes the database files. This is the quickest form of
shutdown. This command should not be used as the routine method of closing the
database, because when the database is accessed next time, it may take a long time
to start.

SHUTDOWN COMPACT This is similar to normal SHUTDOWN, but reduces the *.data file to its minimum
size. It can take much longer than normal SHUTDOWN. This shouldn't be used as
routine.

SHUTDOWN SCRIPT This is similar to SHUTDOWN COMPACT, but it does not rewrite the *.data
and text table files. After SHUTDOWN SCRIPT, only the *.script and
*.properties files remain. At the next startup, these files are processed and the
*.data file is created if there are cached tables. This command in effect performs
part of the job of SHUTDOWN COMPACT, leaving the other part to be performed
automatically at the next startup.

This command produces a full script of the database which can be edited for special
purposes prior to the next startup.

Only a user with the DBA role can execute this statement.

BACKUP DATABASE

backup database statement

<backup database statement> ::= BACKUP DATABASE TO <file path> [SCRIPT] {[NOT]
COMPRESSED} {[NOT] BLOCKING} [AS FILES]

Backup the database to specified <file path> for archiving purposes.

The <file path> can be in two forms. If the <file path> ends with a forward slash, it specifies a directory. In
this case, an automatic name for the archive is generated that includes the date, time and the base name of the database.
The database is backed up to this archive file in the specified directory. The archive is in .tar.gz or .tar format
depending on whether it is compressed or not.

If the <file path> does not end with a forward slash, it specifies a user-defined file name for the backup archive.
The file extension must be either .tar.gz or .tar and this must match the compression option.

The default set of options is COMPRESSED BLOCKING.

If SCRIPT is specified, the backup will contain a *.script file, which contain all the data and settings of the
database. This type of backup is suitable for smaller databases. With larger databases, this takes a long time. When
the SCRIPT option is no used, the backup set will consist of the current snapshot of all database files.

If NOT COMPRESSED is specified, the backup is a tar file, without compression. Otherwise, it is in gzip format.

The qualifier, BLOCKING, means all database operations are suspended during backup. During backup, a
CHECKPOINT command is silently executed. This mode is always used when SCRIPT is specified.

System Management

248

Hot backup is performed if NOT BLOCKING is specified. In this mode, the database can be used during backup. This
mode should only be used with very large databases. A hot backup set is less compact and takes longer to restore and
use than a normal backup set produced with the BLOCKING option. You can perform a CHECKPOINT just before
a hot backup in order to reduce the size of the backup set.

If AS FILES is specified, the database files are copied to a directory specified by <file path> without any compression.
The file path must be a directory. If the directory does not exist, it is created. The file path may be absolute or relative.
If it is relative, it is interpreted as relative to the location of database files. When AS FILES is specified, SCRIPT or
COMPRESSED options are not available. The backup can be performed as BLOCKING or NOT BLOCKING.

The HyperSQL jar also contains a program that creates an archive of an offline database. It also contains a program
to expand an archive into database files. These programs are documented in this chapter under Backing up Database
Catalogs.

Only a user with the DBA role can execute this statement.

CHECKPOINT

checkpoint statement

<checkpoint statement> ::= CHECKPOINT [DEFRAG]

Closes the database files, rewrites the script file, deletes the log file and reopens the database.

If DEFRAG is specified, also shrinks the *.data file to its minimum size. CHECKPOINT DEFRAG time depends on
the size of the database and can take a long time with huge databases.

A checkpoint on a multi-user database waits until all other sessions have committed or rolled back. While the
checkpoint is in progress other sessions are kept waiting. Checkpoint does not close any sessions.

Only a user with the DBA role can execute this statement.

SCRIPT

script statement

<script statement> ::= SCRIPT [<file name>]

Returns a script containing SQL statements that define the database, its users, and its schema objects. If <file name>
is not specified, the statements are returned in a ResultSet, with each row containing an SQL statement. No data
statements are included in this form. The optional file name is a single-quoted string. If <file name> is specified,
then the script is written to the named file. In this case, all the data in all tables of the database is included in the script
as INSERT statements.

Only a user with the DBA role can execute this statement.

Data Management Statements
These statements allow data to be transferred in bulk from one database to another using files formatted in the same
manner as the .script files.

EXPORT SCRIPT

export script statement

<export script statement> ::= PERFORM EXPORT SCRIPT FOR DATABASE [{ STRUCTURE
| DATA }] [WITH COLUMN NAMES] TO <single-quoted file path>

System Management

249

<export script table statement> ::= PERFORM EXPORT SCRIPT FOR TABLE <table name>
DATA [WITH COLUMN NAMES] TO <single-quouted file path>

<export script for versioning statement> ::= PERFORM EXPORT SCRIPT FOR DATABASE
VERSIONING DATA FROM TIMESTAMP <single-quoted UTC timestamp string> TO <file
name>

Writes a script containing SQL statements for the database.

The first form writes the whole database, its structure only, or its data only to the file. When only DATABASE is
specified, everything is written out. When STRUCTURE is specified, only the database settings and the definition
of schema objects are written. When DATA is specified, only the data in the tables is written. The optional WITH
COLUMN NAMES clause includes the list of column names in INSERT statements and may be useful for exporting
data to other database engines. This option should not be used for scripts that are imported into HSQLDB with the
PERFORM IMPORT SCRIPT statement, as the script will be rejected.

The second form writes the data for one table only.

The third form writes the data in all system-versioned tables from a given UTC timestamp. This form is used for
database replica synchronization, to be imported into another replica. For synchronization purposes, all system-
versioned tables must have a primary key as those without are not exported. UTC timestamps are used to allow
synchronization across time zones.

Only a user with the SCRIPT_OPS role can execute this statement.

EXPORT DSV

export DSV statement

<export DSV statement> ::= PERFORM EXPORT DATA FROM TABLE <table name> TO
<single-quouted text file source string>

Writes the contents of a table as a DSV file, for example as a Comma-Seperated Values (CSV).

The destination is defined as a file path together with optional setting as defined for a TEXT table. See the Text Tables
chapter for the properties.

Only a user with the SCRIPT_OPS role can execute this statement.

IMPORT SCRIPT

import script statement

<import script statement> ::= PERFORM IMPORT SCRIPT DATA FROM <single-quoted
file path> { CONTINUE | STOP | CHECK } ON ERROR

<import script for versioning statement> ::= PERFORM IMPORT SCRIPT VERSIONING
DATA FROM <single-quoted file path>

Imports data for database tables. The file to be imported must be a file exported with the EXPORT SCRIPT statements
listed above with DATA qualifier, or strictly in the same format.

The first form is for importing data for ordinary tables. The { CONTINUE | STOP | CHECK } ON ERROR clause
determines the action when an error occurs due to constraint violation. The CHECK option does not insert the data,
but checks each INSERT statement in the script for type constraints such as string size limit or row constraints such
as NOT NULL. It cannot check for UNIQUE constraints. The STOP option stops the import at the first error. The
CONTINUE option writes the rows that cannot be imported, to a file in the same location as the imported script, with
the file suffix .reject and the timestamp of the import, then continues the import.

System Management

250

The second form is for importing data for system-versioned tables. This form of import always uses the CONTINUE
option mentioned above. When two replicas of a database exist, an EXPORT is made from one replica and the script
file is used for an IMPORT into the other replica. The import automatically ignores any history that is already in the
table and avoid any duplication of data. Errors can arise when the same row has been inserted, updated or deleted in
both databases. In this case, the changes for the row are not applied and are written to the .reject file.

Only a user with the SCRIPT_OPS role can execute this statement.

IMPORT DSV

import DSV statement

<import DSV statement> ::= PERFORM IMPORT DATA INTO <table name> FROM <single-
quoted file path> { CONTINUE | STOP | CHECK } ON ERROR

Imports data from a DSV file into a table. The file to be imported may be a file exported with the EXPORT DSV
statement listed above, or a file from another source. The source is defined as a file path together with optional setting
as defined for a TEXT table. See the Text Tables chapter for the properties.

The { CONTINUE | STOP | CHECK } ON ERROR clause determines the action when an error occurs due to constraint
violation. The CHECK option does not insert the data, but checks each line of data in the DSV file for type constraints
such as string size limit or row constraints such as NOT NULL. It cannot check for UNIQUE constraints. The STOP
option stops the import at the first error. The CONTINUE option writes the rows that cannot be imported, to a file in
the same location as the imported script, with the file suffix .reject and the timestamp of the import, then continues
the import. If there is a malformed line in the DSV file, the import is aborted with an error message, regardless of
the ON ERROR option.

Only a user with the SCRIPT_OPS role can execute this statement.

CHECK INDEX

check index statement

<check index statement> ::= PERFORM CHECK { ALL TABLE | TABLE < table name
> } INDEX [AND FIX]

Checks the indexes on a single CACHED table, or all the CACHED tables in the database. It returns a list of tables
and indexes with rows counts together with any errors found. The optional AND FIX fixes the damaged indexes on a
table if at least one index is undamaged. If this option is used, you must perform a CHECKPOINT after completion,
otherwise the fixes will be lost.

This statements takes a long time to execute on large tables as all the rows are read again for each index. It also needs
extra Java heap memory over and above normal usage.

Only a user with the DBA role can execute this statement. An example of the output is given below.

 TABLE_OR_INDEX_NAME INFO
 -------------------------- ---------------------
 TABLE PUBLIC.ZIP rows 4096
 SYS_IDX_SYS_PK_10092_10093 readable rows 4096
 TABLE PUBLIC.TEST rows 2084352
 SYS_IDX_SYS_PK_10096_10097 readable rows 2084352

Database Settings
These statements change the database settings.

SET DATABASE COLLATION

System Management

251

set database collation statement

<set database collation statement> ::= SET DATABASE COLLATION <collation name>
[NO PAD | PAD SPACE]

Each database can have its own default collation. Sets the collation from the set of collations supported by HyperSQL.
Once this command has been issued, the database can be opened in any JVM and will retain its collation.

All collations pad the shorter string with spaces when two strings are compared. If NO PAD is specified, comparison
is performed without padding. The default system collation is named SQL_TEXT. To use the default without padding
use SET DATABASE COLLATION SQL_TEXT NO PAD.

After you change the collation for a database that contains collated data, you must execute SHUTDOWN COMPACT
or SHUTDOWN SCRIPT in order to recreate the indexes.

Only a user with the DBA role can execute this statement.

Collations are discussed in the Schemas and Database Objects chapter. Some examples of setting the database collation
follow:

 -- this collation is an ascii collation with Upper Case Comparison (coverts strings to uppercase
 for comparison)
 SET DATABASE COLLATION SQL_TEXT_UCC

 -- this collation is case-insensitive English
 SET DATABASE COLLATION "English 1"
 -- this collation is case-sensitive French
 SET DATABASE COLLATION "French 2"

SET DATABASE DEFAULT RESULT MEMORY ROWS

set database default result memory rows statement

<set database default result memory rows> ::= SET DATABASE DEFAULT RESULT MEMORY
ROWS <unsigned integer literal>

Sets the maximum number of rows of each result set and internal temporary table that is held in memory. Temporary
tables includes views, schema-based and session-based TEMPORARY tables, transient tables for subqueries, and
INFORMATION_SCHEMA tables.

This setting applies to all sessions. Individual sessions can change the value with the SET SESSION RESULT
MEMORY ROWS statement. The default is 0, meaning all result sets are held in memory.

Only a user with the DBA role can execute this statement.

This is equivalent to the connection property hsqldb.result_max_memory_rows.

SET DATABASE DEFAULT TABLE TYPE

set database default table type statement

<set database default table type> ::= SET DATABASE DEFAULT TABLE TYPE { CACHED
| MEMORY }

Sets the type of table created when the next CREATE TABLE statement is executed. The default is MEMORY.

Only a user with the DBA role can execute this statement.

This is equivalent to the connection property hsqldb.default_table_type.

System Management

252

SET DATABASE EVENT LOG LEVEL

set database event log level statement

<set database event log level> ::= SET DATABASE [EXTERNAL] EVENT LOG [SQL]
LEVEL { 0 | 1 | 2 | 3 | 4}

This statement has 3 different purposes and can be used up to three times with different options to configure various
event logging operations.

When the EXTERNAL and SQL options are not used, this statement sets the amount of information logged in the
internal, database-specific event log. Level 0 means no log. Level 1 means only important (error) events. Level 2 means
warning events as well. Level 3 means more events, including both important and less important (normal) events.
Level 4 includes even more details.

The events are logged in a file with the extension .app.log alongside the main database files. For readonly and
mem: databases, if the level is set above 0, the log messages are directed to stderr, but these databases do not generate
many log messages.

This command is equivalent to the connection property hsqldb.applog.

When the EXTERNAL option is used (the SQL option is not allowed in this case), the statement configures the level
of events that are logged to the JDK or Log4J logger. For example, LEVEL 2 indicates error and warning events
(levels 1 and 2) are logged.

When the SQL option is used, this statement logs the SQL statements as they are executed. Each log line contains the
timestamp and the session number, followed by the SQL statement and JDBC arguments if any.

Levels 1, 2, 3 and 4 are supported. Level 1 only logs commits and rollbacks. Level 2 and above log all statements.
Level 2 truncates long statements, while level 3 reports the full statement and parameter values. Level 4 add the update
count or the size of the returned result set.

The logged lines are stored in a file with the extension .sql.log alongside the main database files.

This command is equivalent to the connection property hsqldb.sqllog.

Only a user with the DBA role can execute this statement.

From version 2.3.0, the equivalent URL properties, hsqldb.app_log and hsqldb.sql_log, can be used not
only for a new database, but also when opening an existing file database to change the event log level.

An extract from an .sql.log file created with log Level 3 is shown below. The numbers after the timestamp (10 and
1) show the session number. The values for prepared statement parameters are shown in parentheses at the end of
the statement.

Example 11.7. SQL Log Example

 2012-11-29 10:40:40.250 10 INSERT INTO TEST_CLOB VALUES (1,'Ut enim ad minima veniam, quis
 nostrum exercitationem ...')
 2012-11-29 10:40:40.250 1 INSERT INTO SYSTEM_LOBS.LOB_IDS VALUES(?, ?, ?, ?) (1,49,0,40)
 2012-11-29 10:40:40.250 1 COMMIT
 2012-11-29 10:40:40.265 1 CALL SYSTEM_LOBS.ALLOC_BLOCKS(?, ?, ?) (1,0,1)
 2012-11-29 10:40:40.265 1 COMMIT

SET DATABASE GC

set database gc statement

System Management

253

<set database gc statement> ::= SET DATABASE GC <unsigned integer literal>

In previous versions, an optional property which forced calls to System.gc() after the specified number of row
operations. This has no effect from version 2.5.

Only a user with the DBA role can execute this statement.

SET DATABASE TEXT TABLE DEFAULTS

set database text table defaults statement

<set database text table defaults statement> ::= SET DATABASE TEXT TABLE DEFAULTS
<character literal>

An optional property to override default text table settings. The string literal has the same format as the string used for
setting the data source of a text table, but without the file name. See the Text Tables chapter.

Only a user with the DBA role can execute this statement.

SET DATABASE TRANSACTION CONTROL

set database transaction control statement

<set database transaction control statement> ::= SET DATABASE TRANSACTION CONTROL
{ LOCKS | MVLOCKS | MVCC }

Set the concurrency control system for the database. It can be issued only when all sessions have been committed or
rolled back. This command and its modes is discussed in the Sessions and Transactions chapter.

Only a user with the DBA role can execute this statement.

This is equivalent to the connection property hsqldb.tx.

SET DATABASE TRANSACTION ROLLBACK ON CONFLICT

set database transaction rollback on conflict statement

<set database transaction rollback on conflict statement> ::= SET DATABASE
TRANSACTION ROLLBACK ON CONFLICT { TRUE | FALSE }

When a transaction deadlock or conflict is about to happen, the current transaction is rolled back and an exception is
raised. When this property is set false, the transaction is not rolled back. Only the latest statement that would cause the
conflict is undone and an exception is raised. The property should not be changed unless the application can quickly
perform an alternative statement and complete the transaction. It is provided for compatibility with other database
engines which do not roll back the transaction upon deadlock. This command is also discussed in the Sessions and
Transactions chapter.

Only a user with the DBA role can execute this statement.

This is equivalent to the connection property hsqldb.tx_conflict_rollback.

SET DATABASE TRANSACTION ROLLBACK ON INTERRUPT

set database transaction rollback on interrupt statement

<set database transaction rollback on interrupt statement> ::= SET DATABASE
TRANSACTION ROLLBACK ON INTERRUPT { TRUE | FALSE }

System Management

254

When the user application interrupts a thread that is executing a HyperSQL statement, the engine resets the interrupted
flag on the thread. Setting this property to TRUE changes the behaviour and the transaction is rolled back when the
interrupt is detected. This command is also discussed in the Sessions and Transactions chapter.

Only a user with the DBA role can execute this statement.

This is equivalent to the connection property hsqldb.tx_conflict_rollback.

SET DATABASE DEFAULT ISOLATION LEVEL

set database default isolation level statement

<set database default isolation level> ::= SET DATABASE DEFAULT ISOLATION LEVEL
{ READ COMMITTED | SERIALIZABLE }

Sets the transaction isolation level for new sessions. The default is READ COMMITTED. Each session can also set
its isolation level.

Only a user with the DBA role can execute this statement.

This is equivalent to the connection property hsqldb.tx_level.

SET DATABASE UNIQUE NAME

set database unique name

<set database unique name statement> ::= SET DATABASE UNIQUE NAME <identifier>

Each HyperSQL catalog (database) has an engine-generated internal name. This name is a 16-character long string,
beginning with HSQLDB and based on the time of creation of the database. The name is used for the log events that
are sent to external logging frameworks. The new name must be exactly 16 characters long with no spaces.

Only a user with the DBA role can execute this statement.

SET TABLE TYPE

set table type

<set table type statement> ::= SET TABLE <table name> TYPE { MEMORY | CACHED }

Changes the storage type of an existing table between CACHED and MEMORY types.

Only a user with the DBA role can execute this statement.

SQL Conformance Settings

These statements modify the level of conformance to the SQL Standard in different areas. The settings that specify SQL
SYNTAX are for compatibility with other database engines and are FALSE by default. For all the rest of the settings,
TRUE means better conformance to the Standard (unless the Standard defines the behaviour as implementation
dependent). The default value of a few of these settings is FALSE, due to widespread non-conforming statements that
are already in use in user applications or statements generated by object relational tools. So long as it is practical, it is
best to set the non-conforming defaults to TRUE in order to improve the quality of the database application.

SET DATABASE SQL RESTRICT EXEC

set database sql restrict exec statement

System Management

255

<set database sql restrict exec statement> ::= SET DATABASE SQL RESTRICT EXEC
{ TRUE | FALSE }

Restricts or allows execution of SQL commands consisting of multiple statements in a single string. The property also
disallows or allows the use of java.sql.Statement.executeQuery() for any DDL or DML statement.

This property is FALSE by default. SQL Standard and JDBC require restriction to a single statement. It is advisable
to restrict execution.

Only a user with the DBA role can execute this statement.

This is equivalent to the connection property sql.restrict_exec.

SET DATABASE SQL SIZE

set database sql size statement

<set database sql size statement> ::= SET DATABASE SQL SIZE { TRUE | FALSE }

Enable or disable enforcement of column sizes for CHAR and VARCHAR columns. The default is TRUE, meaning
table definition must contain VARCHAR(n) instead of VARCHAR.

SQL Standard requires enforcement.

Only a user with the DBA role can execute this statement.

This is equivalent to the connection property sql.enforce_size.

SET DATABASE SQL NAMES

set database sql names statement

<set database sql names statement> ::= SET DATABASE SQL NAMES { TRUE | FALSE }

Enable or disable full enforcement of the rule that prevents SQL keywords being used for database object names such
as columns and tables. The default is FALSE, meaning disabled.

SQL Standard requires enforcement. It is better to enable this check, in order to improve the quality and correctness
of SQL statements.

Only a user with the DBA role can execute this statement.

This is equivalent to the connection property sql.enforce_names.

SET DATABASE SQL REGULAR NAMES

set database sql regular names statement

<set database sql regular names statement> ::= SET DATABASE SQL REGULAR NAMES
{ TRUE | FALSE }

Enable or disable use of the underscore character at the beginning, or the dollar character anywhere in database object
names such as columns and tables. The default is TRUE, meaning disabled.

SQL Standard does not allow the underscore character at the start of names, and does not allow the dollar character
anywhere in a name. This setting can be changed for compatibility with existing database or for porting databases
which include names that do not conform to the Standard.

Only a user with the DBA role can execute this statement.

System Management

256

This is equivalent to the connection property sql.regular_names.

SET DATABASE SQL REFERENCES

set database sql references statement

<set database sql references statement> ::= SET DATABASE SQL REFERENCES { TRUE
| FALSE }

This command can enable or disable full enforcement of the rule that prevents ambiguous column references in SQL
statements (usually SELECT statements). A column reference is ambiguous when it is not qualified by a table name
or table alias and can refer to more than one column in a JOIN list.

The property is FALSE by default.

SQL Standard requires enforcement. It is better to enable this check, in order to improve the quality and correctness
of SQL statements. When false, the first matching table is used to resolve the column reference.

Only a user with the DBA role can execute this statement.

This is equivalent to the connection property sql.enforce_refs.

SET DATABASE SQL TYPES

set database sql types statement

<set database sql types statement> ::= SET DATABASE SQL TYPES { TRUE | FALSE }

This command can enable or disable full enforcement of the rules that prevents illegal type conversions and parameters
or nulls without type in SQL statements (usually SELECT statements). For example, an INTEGER column or a DATE
column cannot be compared to a character string or searched with a LIKE expression when the property is TRUE.

The property is FALSE by default.

SQL Standard requires enforcement. It is better to enable this check, in order to improve the quality and correctness
of SQL statements.

Only a user with the DBA role can execute this statement.

This is equivalent to the connection property sql.enforce_type.

SET DATABASE SQL TDC DELETE

set database sql tdc delete statement

<set database sql tdc delete statement> ::= SET DATABASE SQL TDC DELETE { TRUE
| FALSE }

This command can enable or disable full enforcement of the SQL Standard rules that prevents triggered data change
exceptions caused by ON DELETE CASCADE clauses of foreign key constraint.

When there are multiple constraints, a row may be updated by one constraint and deleted by another constraint in the
same operation. This is not allowed by default. Changing this to false allows such violations of the Standard to pass
without an exception.

The property is TRUE by default.

SQL Standard requires enforcement; this property shouldn't be changed unless an application written for a non-
conforming RDBMS needs it.

System Management

257

Only a user with the DBA role can execute this statement.

This is equivalent to the connection property sql.enforce_tdc_delete.

SET DATABASE SQL TDC UPDATE

set database sql tdc update statement

<set database sql tdc update statement> ::= SET DATABASE SQL TDC UPDATE { TRUE
| FALSE }

This command can enable or disable full enforcement of the SQL Standard rules that prevents triggered data change
exceptions caused by multiple ON UPDATE or ON DELETE SET clauses of foreign key constraint. When there are
multiple constraints, a field in a row may be updated by two constraints to different values in the same operation. This
is not allowed by default. Changing this to FALSE allows such violations of the Standard to pass without an exception.

The property is TRUE by default.

SQL Standard requires enforcement; this property shouldn't be changed unless an application written for a non-
conforming RDBMS needs it.

Only a user with the DBA role can execute this statement.

This is equivalent to the connection property sql.enforce_tdc_update.

SET DATABASE SQL TRANSLATE TTI TYPES

set database sql translate tti types statement

<set database sql translate tti types statement> ::= SET DATABASE SQL TRANSLATE
TTI TYPES { TRUE | FALSE }

The JDBC Specification up to version 4.1 does not support some SQL Standard built-in types. Therefore, these types
must be translated to a supported type when accessed through JDBC ResultSet and PreparedStatement methods.

If the property is true, the TIME / TIMESTAMP WITH TIME ZONE types and INTERVAL types are represented in
JDBC methods of ResultSetMetaData and DatabaseMetaData as JDBC datetime types without time zone
and the VARCHAR type respectively. The original type names are preserved.

The property is TRUE by default. If set to FALSE, the type codes for WITH TIME ZONE types will be SQL type
codes as opposed to JDBC type codes.

Only a user with the DBA role can execute this statement.

This is equivalent to the connection property jdbc.translate_tti_types.

SET DATABASE SQL CHARACTER LITERAL

set database sql character literal

<set database sql character literal statement> ::= SET DATABASE SQL CHARACTER
LITERAL { TRUE | FALSE }

When the property is TRUE, the data type of character literal strings is CHARACTER. When the property is FALSE
the data type is VARCHAR.

Setting this property FALSE results in strings not padded with spaces in CASE WHEN expressions that have multiple
literal alternatives.

System Management

258

SQL Standard requires the CHARACTER type.

The property is TRUE by default.

Only a user with the DBA role can execute this statement.

This is equivalent to the connection property sql.char_literal.

SET DATABASE SQL TRUNCATE TRAILING

set database sql truncate trailing

<set database sql truncate trailing> ::= SET DATABASE SQL TRUNCATE TRAILING
{ TRUE | FALSE }

By default, this property is TRUE, Whan a string that is longer than the maximum size of a column is inserted, spaces
at the end are removed to reduce the length of the string to the maximum size of the column. If this is not possible,
an exception is raised.

When the property is set to FALSE, no truncation take place and an exception is always raised. This behaviour is
common to some other database engines.

SQL Standard requires the default behaviour.

The property is TRUE by default.

Only a user with the DBA role can execute this statement.

This is equivalent to the connection property sql.truncate_trailing.

SET DATABASE SQL CONCAT NULLS

set database sql concat nulls statement

<set database sql concat nulls statement> ::= SET DATABASE SQL CONCAT NULLS
{ TRUE | FALSE }

When the property is TRUE, concatenation of a null value with a not-null value results in a null value. When the
property is FALSE this type of concatenation result in the not-null value.

Setting this property FALSE results in concatenation behaviour similar to Oracle or MS SQL Server.

SQL Standard requires a NULL result.

The property is TRUE by default.

Only a user with the DBA role can execute this statement.

This is equivalent to the connection property sql.concat_nulls.

SET DATABASE SQL UNIQUE NULLS

set database sql unique nulls statement

<set database sql unique nulls statement> ::= SET DATABASE SQL UNIQUE NULLS
{ TRUE | FALSE }

When the property is TRUE, with multi-column UNIQUE constraints, it is possible to insert multiple rows for which
one or more of the values for the constraint columns is NULL. When the property is FALSE, if there is any not-null

System Management

259

value in the columns, then the set of values is compared to the existing rows and if there is a match, an exception is
thrown. The setting FALSE, makes the behaviour more restrictive. For example, inserting (1, null) twice is possible
by default, but not possible when the property is FALSE.

Setting this property FALSE results in UNIQUE constraint behaviour similar to Oracle.

SQL Standard requires the default (TRUE) behaviour.

The property is TRUE by default.

Only a user with the DBA role can execute this statement.

This is equivalent to the connection property sql.unique_nulls.

SET DATABASE SQL CONVERT TRUNCATE

set database sql convert truncate

<set database sql convert truncate statement> ::= SET DATABASE SQL CONVERT
TRUNCATE { TRUE | FALSE }

When the property is TRUE, conversion from a floating-point value (a DOUBLE value) to an integral type always
truncates the fractional part. When the property is FALSE, rounding takes place instead of truncation. For example,
assigning the value 123456E-2 to an integer column will result in 1234 by default, but 1235 when the property is
FALSE.

Standard SQL considers this behaviour implementation dependent.

The property is TRUE by default.

Only a user with the DBA role can execute this statement.

This is equivalent to the connection property sql.convert_trunc.

SET DATABASE SQL AVG SCALE

set database sql avg scale

<set database sql avg scale> ::= SET DATABASE SQL AVG SCALE <numeric value>

By default, the result of division and the AVG and MEDIAN aggregate functions has the same type as the aggregated
type of the values. This includes the scale. The scale specified with this property is used if it is larger than the scale of
the operation. For example, the average of 5 and 10 is 7 by default, but 7.50 if the scale is specified as 2. The result
of 7/3 is 2 by default but 2.33 if the scale is specified as 2.

Standard SQL considers this behaviour implementation dependent. Some databases use a default scale larger than zero.

The property is 0 by default.

Only a user with the DBA role can execute this statement.

This is equivalent to the connection property sql.avg_scale.

SET DATABASE SQL DOUBLE NAN

set database sql double nan

<set database sql double nan> ::= SET DATABASE SQL DOUBLE NAN { TRUE | FALSE }

System Management

260

When the property is TRUE, division of a floating-point value (a DOUBLE value) by zero raises an exception. When
the property is FALSE, a Java Double.NaN, POSITIVE_INFINITY or NEGATIVE_INFINITY value is returned.

Standard SQL requires an exception to be raised.

The property is TRUE by default.

Only a user with the DBA role can execute this statement.

This is equivalent to the connection property sql.double_nan.

SET DATABASE SQL NULLS FIRST

set database sql nulls first

<set database sql nulls first> ::= SET DATABASE SQL NULLS FIRST { TRUE | FALSE }

When the property is TRUE, nulls appear before values in result sets with ORDER BY. When set FALSE, nulls appear
after the values. Some databases, including PostgreSQL, Oracle, and MS SQL Server, return nulls after the values.

The property is TRUE by default.

Only a user with the DBA role can execute this statement.

This is equivalent to the connection property sql.nulls_first.

SET DATABASE SQL NULLS ORDER

set database sql nulls order

<set database sql nulls order> ::= SET DATABASE SQL NULLS ORDER { TRUE | FALSE }

When NULLS FIRST or NULLS LAST is used explicitly in the ORDER BY clause, this property is ignored.

When the property is TRUE, nulls appear according to the value of NULL FIRST property as described above.

When set FALSE, nulls appear according to the value of NULLS FIRST property when DESC is not used in the
ORDER BY clause. But if DESC is used, the position of nulls is reversed. Some databases, including MySQL and
Oracle, return nulls in this manner when DESC is used in ORDER BY.

The property is TRUE by default.

Only a user with the DBA role can execute this statement.

This is equivalent to the connection property sql.nulls_order.

SET DATABASE SQL IGNORECASE

set database sql ignorecase

<set database sql ignorecase> ::= SET DATABASE SQL IGNORECASE { TRUE | FALSE }

This property is FALSE by default and should only be used in special circumstances where compatibility with a
different database is required.

When the property is TRUE, all declarations of VARCHAR columns in tables or other database objects are converted to
VARCHAR_IGNORECASE. This has a global effect on the database, unlike the SET IGNORECASE statement which
applies only to the current session.

System Management

261

The property is FALSE by default.

Only a user with the DBA role can execute this statement.

This is equivalent to the connection property sql.ignore_case.

SET DATABASE SQL LOWER CASE IDENTIFIER

set database sql lower case identifier

<set database sql lower case identifier> ::= SET DATABASE SQL LOWER CASE
IDENTIFIER { TRUE | FALSE }

This property is FALSE by default and should only be used in special circumstances where additional compatibility
with MySQL or PostgreSQL is required.

When the property is TRUE, the names of column, tables and schemas are returned from JDBC ResultSetMetaData
methods in lowercase instead of uppercase if the database objects were created as unquoted identifiers. Quoted
identifier names are still returned in the original case.

The property is FALSE by default.

Only a user with the DBA role can execute this statement.

This is equivalent to the connection property sql.lowercase_ident.

SET DATABASE SQL LIVE OBJECT

set database sql live object

<set database sql live object> ::= SET DATABASE SQL LIVE OBJECT { TRUE | FALSE }

This property is FALSE by default and can only be used in mem: databases.

When the property is FALSE, all java objects stored in a column of type OTHER are serialized. When the property
is FALSE, objects are not serialized at all.

This is equivalent to the connection property sql.live_object.

SET DATABASE SQL SYS INDEX NAMES

set database sql sys index names

<set database sql sys table names statement> ::= SET DATABASE SQL SYS INDEX
NAMES { TRUE | FALSE }

This property, when set TRUE, changes the naming method for system generated indexes that are used to support
UNIQUE and FOREIGN KEY constraints. By default, the names of those indexes are generated as strings with SYS_
prefixes. When the property is set TRUE, the names will be the same as the constraint names.

Changing the property does not affect the names of indexes for the constraints that have already been defined. After a
restart of the database all system-generated indexes are named according to the setting for this property.

The property is FALSE by default.

Only a user with the DBA role can execute this statement.

This is equivalent to the connection property sql.sys_index_names.

System Management

262

SET DATABASE SQL SYNTAX DB2

set database sql syntax DB2

<set database sql syntax DB2 statement> ::= SET DATABASE SQL SYNTAX DB2 { TRUE
| FALSE }

This property, when set TRUE, enables support for some elements of DB2 syntax. Single-row SELECT statements
(SELECT <expression list> without the FROM clause) are supported and treated as the SQL Standard
equivalent, VALUES <expression list>. The DUAL table is supported, as well as the ROWNUM pseudo
column. BINARY type definitions such as VARCHAR(L) FOR BIT DATA are supported. Empty DEFAULT clauses
in column definitions are supported.

The property is FALSE by default.

Only a user with the DBA role can execute this statement.

This is equivalent to the connection property sql.syntax_db2.

SET DATABASE SQL SYNTAX MSS

set database sql syntax MSS

<set database sql syntax MSS statement> ::= SET DATABASE SQL SYNTAX MSS { TRUE
| FALSE }

This property, when set TRUE, enables support for some elements of SQLServer syntax. Single-row SELECT
statements (SELECT <expression list> without the FROM clause) are supported and treated as the SQL
Standard equivalent, VALUES <expression list>. The parameters of CONVERT() function are switched in
this mode.

The property is FALSE by default.

Only a user with the DBA role can execute this statement.

This is equivalent to the connection property sql.syntax_mss.

SET DATABASE SQL SYNTAX MYS

set database sql syntax MYS

<set database sql syntax MYS statement> ::= SET DATABASE SQL SYNTAX MYS { TRUE
| FALSE }

This property, when set TRUE, enables support for some elements of MySQL syntax. The TEXT data type is translated
to LONGVARCHAR.

In CREATE TABLE statements, [NOT NULL | NULL] can be used immediately after the column type name and
before the DEFAULT clause. AUTO_INCREMENT is translated to the GENERATED BY DEFAULT AS IDENTITY
clause.

Single-row SELECT statements (SELECT <expression list> without the FROM clause) are supported and
treated as the SQL Standard equivalent, VALUES <expression list>.

The property is FALSE by default.

Only a user with the DBA role can execute this statement.

System Management

263

This is equivalent to the connection property sql.syntax_mys.

SET DATABASE SQL SYNTAX ORA

set database sql syntax ORA

<set database sql syntax ORA statement> ::= SET DATABASE SQL SYNTAX ORA { TRUE
| FALSE }

This property, when set TRUE, enables support for some elements of Oracle syntax. The DUAL table is supported,
together with ROWNUM, NEXTVAL and CURRVAL syntax and semantics.

The non-standard types are translated to supported standard types. BINARY_DOUBLE and BINARY_FLOAT are
translated to DOUBLE. LONG RAW and RAW are translated to VARBINARY with long or medium length limits.
LONG and VARCHAR2 are translated to VARCHAR with long or medium length limits. NUMBER is translated to
DECIMAL. Some extra type conversions and no-arg functions are also allowed in this mode.

The property is FALSE by default.

Only a user with the DBA role can execute this statement.

This is equivalent to the connection property sql.syntax_ora.

SET DATABASE SQL SYNTAX PGS

set database sql syntax PGS

<set database sql syntax PGS statement> ::= SET DATABASE SQL SYNTAX PGS { TRUE
| FALSE }

This property, when set TRUE, enables support for some elements of PosgtreSQL syntax. The TEXT data type is
translated to LONGVARCHAR, while the SERIAL data types is translated to BIGINT together with GENERATED
BY DEFAULT AS IDENTITY.

Single-row SELECT statements (SELECT <expression list> without the FROM clause) are supported and
treated as the SQL Standard equivalent, VALUES <expression list>.

The functions NEXTVAL(<sequence name string>), CURRVAL(<sequence name string>) and
LASTVAL() are supported in this compatibility mode.

The property is FALSE by default.

Only a user with the DBA role can execute this statement.

This is equivalent to the connection property sql.syntax_pgs.

SET DATABASE REFERENTIAL INTEGRITY

set database referential integrity statement

<set database referential integrity statement> ::= SET DATABASE REFERENTIAL
INTEGRITY { TRUE | FALSE }

This command enables or disables the enforcement of referential integrity constraints (foreign key constraints), check
constraints apart from NOT NULL and execution of triggers. By default, all constraints are checked.

The only legitimate use of this statement is before importing large amounts of external data into tables that have
existing FOREIGN KEY constraints. After import, the statement must be used again to enable constraint enforcement.

System Management

264

If you are not sure the data conforms to the constraints, run queries to verify all rows conform to the FOREIGN KEY
constraints and take appropriate actions for the rows that do not conform.

A query example to return the rows in a foreign key table that have no parent is given below:

Example 11.8. Finding foreign key rows with no parents after a bulk import

 SELECT * FROM foreign_key_table LEFT OUTER JOIN primary_key_table
 ON foreign_key_table.fk_col = primary_key_table.pk_col WHERE primary_key_table.pk_col IS NULL

Only a user with the DBA role can execute this statement.

Cache, Persistence and Files Settings
These statements control the memory and other settings for database persistence.

SET FILES BACKUP INCREMENT

set files backup increment statement

<set files backup increment statement> ::= SET FILES BACKUP INCREMENT { TRUE
| FALSE }

Before any part of the .data file is modified, the original contents are stored in the .backup file. At CHECKPOINT
or SHUTDOWN the latest data is fully saved and the .backup file is deleted.

In older versions, this command allowed an alternative method of backup that is no longer supported. From version
2.5.1 this command is still accepted but has no effect.

Only a user with the DBA role can execute this statement.

This is equivalent to the connection property hsqldb.inc_backup.

SET FILES CACHE ROWS

set files cache rows statement

<set files cache rows statement> ::= SET FILES CACHE ROWS <unsigned integer
literal>

Sets the maximum number of rows (of CACHED tables) held in the memory cache. The default is 50000 rows.

Only a user with the DBA role can execute this statement.

This is equivalent to the connection property hsqldb.cache_rows.

SET FILES CACHE SIZE

set files cache size statement

<set files cache size statement> ::= SET FILES CACHE SIZE <unsigned integer
literal>

Sets maximum amount of data (of CACHED tables) in kilobytes held in the memory cache. The default is 10000
kilobytes. Note the amount of memory used is larger than this amount, which does not account for Java object size
overheads.

Only a user with the DBA role can execute this statement.

System Management

265

This is equivalent to the connection property hsqldb.cache_size.

SET FILES DEFRAG

set files defrag statement

<set files defrag statement> ::= SET FILES DEFRAG <unsigned integer literal>

Sets the threshold for performing a DEFRAG during a checkpoint. The <unsigned integer literal> is the
percentage of abandoned space in the *.data file. When a CHECKPOINT is performed either as a result of the .log
file reaching the limit set by SET FILES LOG SIZE m, or by the user issuing a CHECKPOINT command, the
amount of space abandoned since the database was opened is checked and if it is larger than the specified percentage, a
CHECKPOINT DEFRAG is performed instead of a CHECKPOINT. As the DEFRAG operation uses a lot of memory
and takes a long time with large databases, setting the threshold well above zero is suitable for databases that are
around than 500 MB or more.

The default is 0, which indicates no DEFRAG. Useful values are between 30 to 60.

Only a user with the DBA role can execute this statement.

This is equivalent to the connection property hsqldb.defrag_limit.

SET FILES LOG

set files log statement

<set files log statement> ::= SET FILES LOG { TRUE | FALSE }

Sets logging of database operations on or off. Turning logging off is for special usage, such as temporary cache usage.
The default is TRUE.

Only a user with the DBA role can execute this statement.

This is equivalent to the connection property hsqldb.log_data.

SET FILES LOG SIZE

set files log size statement

<set files log size statement> ::= SET FILES LOG SIZE <unsigned integer literal>

Sets the maximum size in MB of the *.log file to the specified value. The default maximum size is 50 MB. If the
value is zero, no limit is used for the size of the file. When the size of the file reaches this value, a CHECKPOINT
is performed and the the *.log file is cleared to size 0.

Only a user with the DBA role can execute this statement.

This is equivalent to the connection property hsqldb.log_size.

SET FILES NIO

set files nio

<set files nio statement> ::= SET FILES NIO { TRUE | FALSE }

Sets the access method of the .data file. The default is TRUE and uses the Java nio classes to access the file via
memory-mapped buffers.

System Management

266

Only a user with the DBA role can execute this statement.

This is equivalent to the connection property hsqldb.nio_data_file.

SET FILES NIO SIZE

set files nio size

<set files nio size statement> ::= SET FILES NIO SIZE <unsigned integer literal>

Sets The maximum size of .data file in megabytes that can use the nio access method. When the file gets larger than
this limit, non-nio access methods are used. Values 64, 128, 256, 512, 1024 and larger multiples of 512 can be used.
The default is 256MB.

Only a user with the DBA role can execute this statement.

This is equivalent to the connection property hsqldb.nio_max_size.

SET FILES WRITE DELAY

set files write delay statement

<set files write delay statement> ::= SET FILES WRITE DELAY {{ TRUE | FALSE }
| <seconds value> | <milliseconds value> MILLIS}

Set the WRITE DELAY property of the database. The WRITE DELAY controls the frequency of file sync for the
log file. When WRITE_DELAY is set to FALSE or 0, the sync takes place immediately at each COMMIT. WRITE
DELAY TRUE performs the sync once every 0.5 seconds (which is the default). A numeric value can be specified
instead.

The purpose of this command is to control the amount of data loss in case of a total system crash. A delay of 1 second
means at most the data written to disk during the last second before the crash is lost. All data written prior to this has
been synced and should be recoverable.

A write delay of 0 impacts performance in high load situations, as the engine has to wait for the file system to catch up.

To avoid this, you can set write delay down to 10 milliseconds.

Each time the SET FILES WRITE DELAY statement is executed with any value, a sync is immediately performed.

Only a user with the DBA role can execute this statement.

This is equivalent to the connection properties hsqldb.write_delay and hsqldb.write_delay_millis.

SET FILES SCALE

set files scale

<set files scale statement> ::= SET FILES SCALE <scale value>

Changes the scale factor for the .data file. The default scale is 32 and allows 64GB of data storage capacity. The
scale can be increased in order to increase the maximum data storage capacity. The scale values 16, 32, 64, 128, 256,
512, 1024 are allowed. Scale value 1024 allows a maximum capacity of 2 TB.

This command should be used before data is inserted into CACHED TABLES. It can also be used when there is
some data in CACHED tables but then it has no effect until a SHUTDOWN COMPACT or SHUTDOWN SCRIPT is
performed. This is equivalent to the connection property hsqldb.cache_file_scale.

System Management

267

The scale factor indicates the size of the unit of storage of data in bytes. For example, with a scale factor of 128, a row
containing a small amount of data will use 128 bytes. Larger rows may use multiple units of 128 bytes.

When the data file already exists, you must perform SHUTDOWN COMPACT or SHUTDOWN SCRIPT after
changing the scale. Otherwise the change will be forgotten.

Only a user with the DBA role can execute this statement.

This is equivalent to the connection property hsqldb.cache_file_scale.

SET FILES LOB SCALE

set files lob scale

<set files lob scale statement> ::= SET FILES LOB SCALE <scale value>

Changes the scale factor for the .lobs file. The scale is interpreted in kilobytes. The default scale is 32 and allows
64TB of lob data storage capacity. The scale can be reduced in order to improve storage efficiency. If the lobs are a lot
smaller than 32 kilobytes, reducing the scale will reduce wasted space. The scale values 1, 2, 4, 8, 16, 32 are allowed.
For example, if the average size of lobs is 4 kilobytes, the default scale of 32 will result in 28KB wasted space for each
lob. Reducing the lob scale to 2 will result in average 1KB wasted space for each lob.

This command can be used only when there is no lob in the database.

Only a user with the DBA role can execute this statement.

This is equivalent to the connection property hsqldb.lob_file_scale.

SET FILES LOB COMPRESSED

set files lob compressed

<set files lob compressed statement> ::= SET FILES LOB COMPRESSED { TRUE | FALSE }

By default, lobs are not compressed for storage. When this setting is TRUE, all BLOB and CLOB values stored in the
database are compressed. Compression reduces the storage size but increases the access time.

This command can be used only when there is no lob in the database.

Only a user with the DBA role can execute this statement.

This is equivalent to the connection property hsqldb.lob_compressed.

SET FILES SCRIPT FORMAT

set files script format

<set files script format statement> ::= SET FILES SCRIPT FORMAT { TEXT |
COMPRESSED }

Changes the compression setting for database scripts. The default is text. Using COMPRESSED results in the storage
of the .script file in gzip compressed form. Using this command causes a CHECKPOINT.

Only a user with the DBA role can execute this statement.

SET FILES SPACE

set files space

System Management

268

<set files space statement> ::= SET FILES SPACE TRUE

Enables use of table spaces for CACHED tables. Each table is allocated space in blocks. The size of each block in
megabytes is equal to the data file scale divided by 16. The default data file scale is 32 so the default size of each block
is 2 MB. See the SET TABLE NEW SPACE statement below.

Only a user with the DBA role can execute this statement.

SET TABLE NEW SPACE

set table new space

<set table new space statement> ::= SET TABLE <table name> NEW SPACE

Sets the named table to use its own space blocks within the .data file. Use of table spaces should be enabled with
the SET FILES SPACE statement above, before this statement is executed.

Only a user with the DBA role can execute this statement.

Authentication Settings

Two settings are available for authentication control.

When the default password authentication is used, the passwords can be checked for complexity according to
administrative rules

SET DATABASE PASSWORD CHECK FUNCTION

set database password check function

<set database password check function statement> ::= SET DATABASE PASSWORD CHECK
FUNCTION { <routine body> | NONE }

The routine body is the body of a function that has a VARCHAR parameter and returns a BOOLEAN. This function
checks the PASSWORD submitted as parameter and returns TRUE if it conforms to complexity checks, or FALSE,
if it does not.

The <routine body> can be an SQL block or an external Java function reference. This is covered in the SQL-
Invoked Routines chapter

To disable this mechanism, the token NONE can be specified instead of the <routine body>.

Only a user with the DBA role can execute this statement.

In the examples below, an SQL function and a Java function are used.

 SET DATABASE PASSWORD CHECK FUNCTION
 BEGIN ATOMIC
 IF CHAR_LENGTH(PASSWORD) > 6 THEN
 RETURN TRUE;
 ELSE
 RETURN FALSE;
 END IF;
 END

 SET DATABASE PASSWORD CHECK FUNCTION EXTERNAL NAME
 'CLASSPATH:org.anorg.access.AccessClass.accessMethod'

 // the Java method is defined like this

System Management

269

 public static boolean accessMethod(String param) {
 return param != null && param.length > 6;
 }

It is possible to replace the default password authentication completely with a function that uses external authentication
servers, such as LDAP. This function is called each time a user connects to the database.

SET DATABASE AUTHENTICATION FUNCTION

set database authentication function

<set database authentication function statement> ::= SET DATABASE AUTHENTICATION
FUNCTION { <external body reference> | NONE }

The routine body is an external Java function reference. This function has three String parameters. The first parameter
is the unique name of the database, the second parameter the user name, and the third parameter the password.

External authentication can be used in two different patterns. In the first pattern, user names must be stored in the
database. In the second pattern, user names shouldn't be stored in the database and any names that are stored in the
database are ignored.

In both patterns, the username and password are checked by the authentication function. If the function throws a
runtime exception then authentication fails.

In the first pattern, the function always returns null if authentication is successful.

In the second pattern, the function returns a list of role names that have been granted to the user. These roles must
match the ROLE objects that have been defined in the database.

The Java function should return an instance of org.hsqldb.jdbc.JDBCArrayBasic constructed with a String[] argument
that contains the role names.

Only a user with the DBA role can execute this statement.

 SET DATABASE AUTHENTICATION FUNCTION EXTERNAL NAME
 'CLASSPATH:org.anorg.access.AccessClass.accessExernalMethod'

 // the Java method is defined like this
 public static java.sql.Array accessExternalMethod(String database, String user, String password)
 {
 if (externalCheck(database, user, password) {
 return null;
 }
 throw new RuntimeException("failed to authenticate");
 }

270

Chapter 12. Deployment Guide

Fred Toussi, The HSQL Development Group
$Revision: 6621 $

Copyright 2002-2022 Fred Toussi. Permission is granted to distribute this document without any alteration
under the terms of the HSQLDB license. Additional permission is granted to the HSQL Development Group
to distribute this document with or without alterations under the terms of the HSQLDB license.
2022-10-20

Memory and Disk Use
Memory used by the program can be thought of as two distinct pools: memory used for table data which is not released
unless the data is deleted and memory that can be released or is released automatically, including memory used for
caching, building result sets and other internal operations such as storing the information needed for a rollback a
transaction.

Most JVM implementations allocate up to a maximum amount of memory (usually 64 MB by default). This amount is
generally not adequate when large memory tables are used, or when the average size of rows in cached tables is larger
than a few hundred bytes. The maximum amount of allocated memory can be set on the Java command line that is
used for running HyperSQL. For example, the JVM parameter -Xmx256m increases the amount to 256 MB.

Table Memory Allocation

The memory used for a MEMORY table is the sum of memory used by each row. Each MEMORY table row is a Java
object that has 2 int or reference variables. It contains an array of objects for the fields in the row. Each field is an
object such as Integer, Long, String, etc. In addition, each index on the table adds a node object to the row.
Each node object has 6 int or reference variables. As a result, a table with just one column of type INTEGER will have
four objects per row, with a total of 10 variables of 4 bytes each - currently taking up 80 bytes per row. Beyond this,
each extra column in the table adds at least a few bytes to the size of each row.

Result Set Memory Allocation

By default, all the rows in the result set are built in memory, so very large result sets may not be possible to build. A
server-mode databases releases the result set from the server memory once the database server has returned the result
set. An in-process database releases the memory when the application program closes the java.sql.ResultSet
object. A server mode database requires additional memory for returning result sets, as it converts the full result set
into an array of bytes which is then transmitted to the client.

HyperSQL 2 supports disk-based result sets. The commands, SET SESSION RESULT MEMORY ROWS
<integer> and SET DATABASE DEFAULT RESULT MEMORY ROWS <integer> specify a threshold for the
number of rows. Results with row counts above the threshold are stored on disk. These settings also apply to temporary
tables, views and subquery tables.

Disk-based result sets slow down the database operations and should be used only when absolutely necessary, perhaps
with result sets that are larger than tens of thousands of rows.

In a server mode database, when the setFetchSize() method of the Statement interface is used to limit the number of
rows fetched, the whole result is held by the engine and is returned to the JDBC ResultSet in blocks of rows of the
specified fetch size.

Deployment Guide

271

Temporary Memory Use During Operations
When UPDATE and DELETE queries are performed on CACHED tables, the full set of rows that are affected,
including those affected due to ON UPDATE actions, is held in memory for the duration of the operation. This means
it may not be possible to perform deletes or updates involving very large numbers of rows of CACHED tables. Such
operations should be performed in smaller sets. This memory is released as soon as the DELETE or UPDATE is
performed.

When transactions support is enabled with SET AUTOCOMMIT FALSE, lists of all insert, delete or update operations
are stored in memory so that they can be undone when ROLLBACK is issued. For CACHED tables, only the
transaction information is held in memory, not the actual rows that have changed. Transactions that span thousands
of modifications to data will take up a lot of memory until the next COMMIT or ROLLBACK clears the list. Each
row modification uses less than 100 bytes until COMMIT.

When subqueries or views are used in SELECT and other statements, transient tables are created and populated by the
engine. If the SET SESSION RESULT MEMORY ROWS <integer> statement has been used, these transient
tables are stored on disk when they are larger than the threshold.

Data Cache Memory Allocation
With CACHED tables, the data is stored on disk and only up to a maximum number of rows are held in memory at
any time. The default is up to 50,000 rows. The SET FILES CACHE ROWS command or the hsqldb.cache_rows
connection property can be set to alter this amount. As any random subset of the rows in any of the CACHED tables
can be held in the cache, the amount of memory needed by cached rows can reach the sum of the rows containing the
largest field data. For example if a table with 100,000 rows contains 40,000 rows with 1,000 bytes of data in each row
and 60,000 rows with 100 bytes in each, the cache can grow to contain 50,000 of the smaller rows, but as explained
below, only 10,000 or the large rows.

An additional property, hsqldb.cache_size is used in conjunction with the hsqldb.cache_rows property. This puts a
limit in bytes on the total size of rows that are cached. The default value is 10,000KB. This is the size of binary images
of the rows and indexes. It translates to more actual memory, typically 2-4 times, used for the cache because the data
is represented by Java objects.

If memory is limited, the hsqldb.cache_rows or hsqldb.cache_size database properties can be reduced. In the example
above, if the hsqldb.cache_size is reduced from 10,000 to 5,000, it may allow the number of cached rows to reach
50,000 small rows, but only 5,000 of the larger rows.

Data for CLOB and BLOB columns is not cached and does not affect the CACHED table memory cache.

The operating system usually allocates a large amount of buffer memory for speed up file read operations. Therefore,
when a lot of memory is available to the operating system, all database operations perform faster.

Object Pool Memory Allocation
HyperSQL uses a set of fast pools for immutable objects such as Integer, Long and short String objects that are stored
in the database. In most circumstances, this reduces the memory footprint still further as fewer copies of the most
frequently used objects are kept in memory. The object pools are shared among all databases in the JVM. The size of
each pool can be modified only by altering and recompiling the org.hsqldb.store.ValuePool class.

Lob Memory Usage
Access to lobs is always performed in chunks internally, so it is perfectly possible to store and access a CLOB or
BLOB that is larger than the JVM memory allocation. The actual total size of lobs is almost unlimited. We have tested
with over 100 GB of lobs without any loss of performance.

Deployment Guide

272

By default, HyperSQL 2 uses memory-based tables for the lob schema (not the actual lob data). Therefore, it is practical
to store about 100,000 individual lobs in the database with the default JVM memory allocation. More lobs can be
stored with larger JVM memory allocations. In order to store more than a few hundreds of thousands of lobs, you can
change the lob schema storage to CACHED tables with the following statements:

Example 12.1. Using CACHED tables for the LOB schema

 SET TABLE SYSTEM_LOBS.BLOCKS TYPE CACHED
 SET TABLE SYSTEM_LOBS.LOBS TYPE CACHED
 SET TABLE SYSTEM_LOBS.LOB_IDS TYPE CACHED

Using NIO File Access

This method of file access uses the operating system's memory-mapped file buffer for the .data file. For larger
databases with CACHED tables, use of nio improves database access speed significantly. Performance improvements
can be tenfold or even higher. By default, NIO is used for .data files from 16 MB up to 256 MB. You can increase
the limit with the SET FILES NIO SIZE <value> statement. There should be enough RAM available to
accommodate the memory mapped buffers. For vary large nio usage, a 64 bit JVM must be used. The memory is not
taken from the JVM memory allocation, therefore there is no need to increase the -Xmx parameter of the JVM. If not
enough memory is available for the specified value, nio is not used.

Disk Space Use

With file: database, the engine uses the disk for storage of data and any change. This includes: the .script file which
is always present, the .log file which grows in size and is reset at regular intervals, the .data file when CACHED
tables are used, and the .lobs file when CLOB or BLOB data is used. The .backup file is used for safely by the
engine to store parts of the .data file that are modified internally during operation. Both the .log and .backup
files are reset at each CHECKPOINT and a new copy of the .script file is written. Spare space, at larger than the
total size of the .data and .script files, plus the maximum allowed size of the .log file, is needed. The .lobs
file is not copied during database updates as it is not necessary for safety.

When the RESULT MEMORY ROWS setting is used to limit the memory rows in result sets and temporary tables,
each session uses additional disk space for large results and temporary tables. These results are stored in files in the
temp directory alongside the database files, which are deleted at database shutdown.

Using HyperSQL Without Logging Data Change

All file: database that are not read-only, write changes to the .log file. There are scenarios where writing to the .log
file can be turned off to improve performance, especially with larger databases used for temporary data. For these
applications you can set the property hsqldb.log_data=false to disable the recovery log and speed up data
change performance. The equivalent SQL command is SET FILES LOG FALSE.

With this setting, no data is logged, but all the changes to cached tables are written to the .data file. To persist all
the data changes up to date, you can use the CHECKPOINT command. If you perform SHUTDOWN, the data is also
persisted correctly. If you do not use CHECKPOINT or SHUTDOWN when you terminate the application, all the
changes are lost and the database reverts to its original state when it is opened without losing any of the original data.

Your server applications can use a database as a temporary disk data cache which is not persisted past the lifetime of
the application. For this usage, delete the database files when the application ends.

On some platforms, such as embedded devices with SSD storage, this is also a useful option. Your application should
issue CHECKPOINT to save the changes made so far. This method of use reduces write operations on SSD devices.
For this usage, the lock file can also be disabled with the connection property hsqldb.lock_file=false.

Deployment Guide

273

Bulk Inserts, Updates and Deletes

Bulk inserts, deletes and updates are performed with the best performance with the following method. The database
remains safe and consistent using this method. In the event of a machine crash during the operation, the database can
be recovered to the point just before the bulk operation.

1. Before the operation, execute the SET FILES LOG FALSE statement.

2. Execute the CHECKPOINT statement.

3. Perform all the bulk operations, using batched prepared statements. A batch size of 1000 to 10000 is adequate.
Perform commit after each batch.

4. After all the bulk operations are complete, execute the SET FILES LOG TRUE statement.

5. Finally execute the CHECKPOINT statement.

6. If you have performed many thousands of updates or deletes (not just inserts), it is a good idea to execute
CHECKPOINT DEFRAG, instead of CHECKPOINT at the end.

7. If things go wrong during the bulk operation, for example when a unique constraint violation aborts the operation,
and you want to redo the whole operation, just use SHUTDOWN IMMEDIATELY instead of CHECKPOINT.
When you restart the database it will revert to the state at the first CHECKPOINT and the bulk operation can be
redone.

Managing Database Connections
In all running modes (server or in-process) multiple connections to the database engine are supported. in-process
(standalone) mode supports connections from the client in the same Java Virtual Machine, while server modes support
connections over the network from several different clients.

Connection pooling software can be used to connect to the database but it is not generally necessary. Connection pools
may be used for the following reasons.

• To allow new queries to be performed while a time-consuming query is being performed in the background. In
HyperSQL, blocking depends on the transaction control model, the isolation level, and the current activity by other
sessions.

• To limit the maximum number of simultaneous connections to the database for performance reasons. With HSQLDB
this can be useful if your application is designed in a way that opens and closes connections for each small task.
Also, the overall performance may be higher when fewer simultaneous connections are used. If you want to reduce
the number of simultaneous sessions, you can use a connection pool with fewer pooled connections.

An application that is not both multi-threaded and transactional, such as an application for recording user login and
logout actions, does not need more than one connection. The connection can stay open indefinitely and reopened only
when it is dropped due to network problems.

When using an in-process database, when the last connection to the database is closed, the database still remains open,
waiting for the next connection to be made. From version 2.2.9, each time the last connection is closed all the data
changes are logged and synched to disk.

An explicit SHUTDOWN command, with or without an argument, is required to close the database. A connection
property, shutdown=true, can be used on the connection URL or in a properties object to shutdown the database when
the last connection is closed.

Deployment Guide

274

When using a server database (and to some extent, an in-process database), care must be taken to avoid creating
and dropping JDBC Connections too frequently. Failure to observe this will result in poor performance when the
application is under heavy load.

A common error made by users in load-test simulations is to use a single client machine to open and close thousands
of connections to a HyperSQL server instance. The connection attempts will fail after a few thousand because of OS
restrictions on opening sockets and the delay that is built into the OS in closing them.

Application Development and Testing
First thing to be aware of is the SQL conformance settings of HyperSQL. By default, HyperSQL version 2 applies
stricter conformance rules than version 1.8 and catches long strings or decimal values that do not fit within the specified
length or precision settings. However, there are several conformance settings that are turned off by default. This is
to enable easier migration from earlier versions, and also greater compatibility with databases such as MySQL that
are sometimes very liberal with type conversions. The conformance settings are listed in the System Management
chapter and their connection property equivalents are listed in the Database Properties chapter. Ideally, all the settings
that are not for syntax compatibility with other databases should have a true value for best error checking. You can
turn on the settings for syntax compatibility with another database if you are porting or testing applications targeted
at the other database.

For application unit testing you can use an all-in-memory, in-process database.

If the tests are all run in one process, then the contents of a mem: database survives between tests. To release the
contents, you can use the SHUTDOWN command (an SQL command). You can even use multiple mem: databases
in your tests and SHUTDOWN each one separately.

If the tests are in different processes and you want to keep the data between the tests, the best solution is to use a
Server instance that has a mem: database. After the tests are done, you can SHUTDOWN this database, which will
shutdown the server.

The Server has an option that allows databases to be created as needed by making a connection (see the Listeners
Chapter). This option is useful for testing, as your server is never shut down when a database is shutdown. Each time
you connect to the mem: database that is served by the Server, the database is created if it does not exist (i.e. has been
previously shut down).

If you do not want to run a Server instance, and you need persistence between tests in different processes, then you
should use a file: database. From version 2.2.9 when the last existing connection to the database is closed, the latest
changes to the database are persisted fully with fsync. The database is still in an open state until it is shut down. You can
use the shutdown=true connection property to close the database automatically after the connections are closed.
The automatic sync and shutdown are mainly for test environment. In production environments you should execute
the SHUTDOWN statement before your application is closed. This ensures a quick start next time you connect to
the database.

An alternative option is to use hsqldb.write_delay=false connection property, but this is slightly slower than
the other option and should be used in situations where the test application does not close the connections. This option
uses fsync after each commit. Even if the test process is aborted without shutting down the connections, all committed
data is saved. It has been reported that some data access frameworks do not close all their connection to the database
after the tests. In such situations, you need to use this option if you want the data to persist at the end of the tests

You may actually want to use a file: database, or a server instance that serves a file: database in preference to a mem:
database. As HyperSQL logs the DDL and DML statements in the .log file, this file can be used to check what is
being sent to the database. Note that UPDATE statements are represented by a DELETE followed by an INSERT
statement. Statements are written out when the connection commits. The write delay also has an effect on how soon
the statements are written out. By default, the write delay is 0.5 second.

Deployment Guide

275

The SQL logging feature in version 2.2 and later records all executed statements and can be used for debugging your
application.

Some types of tests start with a database that already contains the tables and data, and perform various operations on it
during the tests. You can create and populate the initial database then set the property "files_readonly=true"
in the .properties file of the database. The tests can then modify the database, but these modifications are not
persisted after the tests have completed.

Databases with "files_readonly=true" can be placed within the classpath and in a jar file. In this case, the
connection URL must use the res: protocol, which treats the database as a resource.

Tweaking the Mode of Operation
Different modes of operation and settings are used for different purposes. Some scenarios are discussed below:

Embedded Databases in Desktop Applications
In this usage, the amount of data change is often limited and there is often a requirement to persist
the data immediately. The default write delay of 0.5 second is fine for many applications. You can
also use the property hsqldb.write_delay_millis=100 to reduce it to 0.1 second, or the property
hsqldb.write_delay=false to force a disk fsync after each commit. Before the application is closed, you
should perform the SHUTDOWN command to ensure the database is opened instantly when it is next opened. Note
you don't need to use SHUTDOWN COMPACT as routine.

Embedded Databases in Server Applications
This usage involves a server application, such as a web application, connecting to an embedded HyperSQL instance. In
this usage, the database is often accessed heavily, therefore performance and latency is a consideration. If the database
is updated heavily, the default value of the WRITE DELAY property (0.5 sec) is often enough, as it is assumed the
server or the application does not go down frequently. If it is necessary, you can reduce the WRITE DELAY to a small
value (20 ms) without impacting the update speed. If you reduce WRITE DELAY to zero, performance drops to the
speed of disk file sync operation.

Alternatively, a server application can use an all-in-memory database instance for fast access, while sending the data
changes to a persistent, disk based instance either periodically or in real time.

Mixed Mode : Embedding a HyperSQL Server (Listener)
Since you won't be able to access in-process database instances from other processes, you will often want to run a
Listener in your applications that use embedded databases. You can do this by starting up a Server or WebServer
instance programatically, but you could also use the class org.hsqldb.util.MainInvoker to start up your
application and a HyperSQL Server or WebServer without any programming. MainInvoker is a general-purpose utility
class to invoke the main methods of multiple classes. Each main class is followed by its arguments (if any), then an
empty string to separate it from the next main class.

Example 12.2. MainInvoker Example

 java -cp path/to/your/app.jar:path/to/hsqldb.jar org.hsqldb.util.MainInvoker com.your.main.App
 "" org.hsqldb.server.Server

(Use ; instead of : to delimit classpath elements on Windows). The empty string separates your com.your.main.App
invocation from the org.hsqldb.server.

Specify the same in-process JDBC URL to your app and in the server.properties file. You can then connect
to the database from outside using a JDBC URL like jdbc:hsqldb:hsql://hostname, while connecting from
inside the application using something like jdbc:hsqldb:file:<filepath of database> .

Deployment Guide

276

This tactic can be used to run off-the-shelf server applications with an embedded HyperSQL Server, without doing
any coding.

MainInvoker can be used to run any number of Java class main method invocations in a single JVM. See the API
spec for MainInvoker for details on its usage.

Server Databases

Running databases in a HyperSQL server is the best overall method of access. As the JVM process is separate from
the application, this method is the most reliable as well as the most accessible method of running databases.

Upgrading Databases
HSQLDB can open databases created with version 2.0 and above. It is a good idea to perform SHUTDOWN
COMPACT to complete the upgrade.

Downgrading is also possible. A database created with the current version can be closed with SHUTDOWN SCRIPT
before you open it with previous 2.x.x versions of HyperSQL.

To upgrade an old database created with version 1.8.x, you can use HSQLDB version 2.3.x to 2.5 to open the database
and perform SHUTDOWN SCRIPT. You can then open the database with version 2.6 or later.

If the 1.8.x database script format is set to BINARY or COMPRESSED (ZIPPED), you must open the database with
version 1.8.x and issue the SET SCRIPTFORMAT TEXT and SHUTDOWN SCRIPT commands with the old version,
prior to version upgrade.

It is strongly recommended to execute SHUTDOWN SCRIPT after an automatic upgrade from previous versions.

A note about SHUTDOWN modes. SHUTDOWN COMPACT is equivalent to SHUTDOWN SCRIPT plus opening
the database and then performing a simple SHUTDOWN.

After upgrading a database, there will be some changes to its settings. For example, the new SET FILES BACKUP
INCREMENT TRUE is applied to improve the shutdown and checkpoint times of larger databases.

If your database has been created with version 1.7.2 or 1.7.3, first upgrade to version 1.8.1 and perform a SHUTDOWN
SCRIPT with this version. You can then upgrade the database to version 2.x.

To upgrade from older version database files (1.7.1 and older) that contain CACHED tables, use the SCRIPT procedure
below. In all versions of HyperSQL, the SCRIPT 'filename' command (used as an SQL statement) allows you
to save a full record of your database, including database object definitions and data, to a file of your choice. You can
then use the PERFORM IMPORT ... statement to load the file.

Manual Changes to the *.script File

The *.script file contains SQL statements for the database settings and creation of objects such as tables, sequences
and user-defined function. It also contains INSERT statements to populate MEMORY tables. A new copy of the
*.script file is created by the database engine at each checkpoint or shutdown. This file is read when the database
is opened. Only some types of SQL statements are used in this file; for example no UPDATE or DELETE statements
are used, and the statements in the file follow a certain sequence. Therefore, the *.script file cannot be edited
freely by the user and any edits must respect the acceptable format.

In HyperSQL the full range of ALTER TABLE commands is available to change the data structures and their names.
However, if an old database cannot be opened due to data inconsistencies, or it uses index or column names that are
not compatible with 2.0, manual editing of the *.script file can be performed and can be faster.

Deployment Guide

277

• Version 2.x does not accept duplicate names for indexes that were allowed before 1.7.2.

• Version 2.x does not accept some table or column names that are SQL reserved keywords without double quoting.

• Version 2.x does not accept unquoted table or column names which begin with an underscore, unless the connection
sql.regular_names is set false.

• Version 2.x is more strict with check conditions and default values.

Other manual changes are also possible. Note that the *.script file must be the result of a SHUTDOWN SCRIPT
and must contain the full data for the database. The following changes can be applied so long as they do not affect
the integrity of existing data.

• Names

Names of tables, columns and indexes can be changed. These changes must be consistent regarding foreign key
constraint references.

• CHECK

A check constraint can always be removed.

• NOT NULL

A not-null constraint can always be removed.

• PRIMARY KEY

A primary key constraint can be removed. It cannot be removed if there is a foreign key referencing the column(s).

• UNIQUE

A UNIQUE constraint can be removed if there is no foreign key referencing the column(s).

• FOREIGN KEY

A FOREIGN KEY constraint can always be removed.

• COLUMN TYPES

Some changes to column types are possible. For example an INTEGER column can be changed to BIGINT.

• INSERT Statements

INSERT statements may be added to the file in the same format as written by the engine.

• Character Escapes

All non-ASCII characters are escaped as Java Unicode escape sequences.

After completing the changes and saving the modified .script file, you can open the database as normal.

Backward Compatibility Issues
HyperSQL 2.7.1 conforms to the SQL Standard better than previous versions and has many more features. For these
reasons, there may be some compatibility issues when converting old database, or using applications that were written

Deployment Guide

278

for version 1.8.x or earlier. Some of the potential issues (and enhancements) are listed here. See the full list of
connection properties for alternatives.

• By default, when comparing strings, the shorter string is padded with spaces. This has an effect on comparing
'test' and 'test ' which are now considered equal, despite the length difference. This behaviour is controlled
by the default PAD SPACE property of collations, which can be changed to NO PAD. See the statement SET
DATABASE COLLATION <name> [PAD SPACE | NO PAD].

• User names and passwords are case-sensitive. The only exception is the username 'SA' which is always converted
to uppercase. Check the .script file of a database for the correct case of user name and password and use this
form in the connection properties or on connection URL.

• It is now possible to specify the admin username and password for a new database (instead of SA and the empty
password).

• HyperSQL 2.x has several settings that relax its conformance to the SQL Standard in the areas of type conversion
and object names. These settings can be turned on for maximum conformance.

• Check constraints must conform to the SQL Standard. A check constraint is rejected if it is not deterministic or
retrospectively deterministic. When opening an old database, HyperSQL silently drops check constraints that no
longer compile. See under check constraints for more detail about what is not allowed.

• Type declarations in column definition and in cast expressions must have the necessary size parameters.

• In connection with the above, an old database that did not have the enforce_strict_size property, is now
converted to version 2.x with the engine supplying the missing size parameters. For example, a VARCHAR column
declaration that has no size, is given a 32K size, a LONGVARCHAR column is given a 16MB size. Check these
sizes are adequate for your use, and change the column definition as necessary.

• Column names in a GROUP BY clause were previously resolved to the column label. They are now resolved to
column name first, and if the name does not match, to the column label.

• If two or more tables in a join contain columns with the same name, the columns cannot be referenced in join
and where conditions. Use table names before column names to qualify the references to such columns. The SET
DATABASE SQL REFERENCES { TRUE | FALSE } statement enables or disables this check.

• If the unqualified wild card is used, as in the statement SELECT * FROM ... no additional column references are
allowed. A table-qualified wild card allows additional column references in the SELECT list

• Table definitions containing GENERATED BY DEFAULT AS IDENTITY but with no PRIMARY KEY do not
automatically create a primary key. Database .script files made with 1.8 are fine, as the PRIMARY KEY clause
is always included. But the CREATE TABLE statements in your application program may assume an automatic
primary key is created. The old shortcut, IDENTITY, is retained with the same meaning. So CREATE TABLE T
(ID IDENTITY, DAT VARCHAR(20)) is translated into CREATE TABLE T(ID INTEGER GENERATED
BY DEFAULT AS IDENTITY PRIMARY KEY, DAT VARCHAR(20)). This last form is the correct way of
defining both auto-increment and primary key in versions 1.8 and 2.x.

• CREATE ALIAS is now obsolete. Use the new function definition syntax. The org.hsqldb.Library class
no longer exists. You should use the SQL form of the old library functions. For example, use LOG(x) rather than
the direct form, "org.hsqldb.Library.log"(x).

• The names of some commands for changing database and session properties have changed. See the list of statements
in this chapter.

• Computed columns in SELECT statements which did not have an alias: These columns had no ResultMetaData
label in version 1.8, but in version 2.x, the engine generates labels such as C1, C2.

Deployment Guide

279

• The issue with the JDBC ResultSetMetaData methods, getColumnName(int column) and
getColumnLabel(int column) has been clarified by the JDBC 4 specification. getColumName() returns
the underlying column name, while getColumnLabel() returns any specified or generated alias. HyperSQL
1.8 and 2.x have a connection property, get_column_name, which defaults to true in version 2.x, but defaulted
to false in some releases of version 1.8.x. You have to explicitly specify this property as false if you want (non-
standard behaviour) getColumnName() to return the same value as getColumnLabel().

HyperSQL Dependency Settings for Applications
Java Module Dependency and Dependency settings using Gradle, Ivy, Maven, Groovy

HyperSQL and SqlTool version 2.7.1 jars are Java Module jars compiled with JDK 11. The module name for
HyperSQL is org.hsqldb and for SqlTool, org.hsqldb.sqltool. In a modular application, these names are
referenced in the module-info.java file for the user application that accesses these jars.

For non-modular applications, the jars are simply included the the classpath. Jars compiled with JDK8 are also provided
and can be used for applications that must run on a JVM older than 11,

This section is about building applications that have dependencies upon HyperSQL, and for executions that use a
dependency library system. Examples of the second type are unit test runs, job runs triggered by a build system, or
systems like Grape that pull libraries from the network at end-user run time.

What version to Pull
The best option for most developers is to depend upon the latest public version of HyperSQL with a range pattern like
[2,). Here are exceptional cases where you should depend on a static version.

• Your application has code dependencies upon version-specific details of the HyperSQL distribution. In this case,
the specific dependency specification should be checked in to your source code control system alongside the code
that manifests the version-dependency. If your code is enhanced to use a newer version of HyperSQL, you should
update the version specification so that whenever code + configs are checked out, the dependency will always match
the code.

• Your organization only allows the use of vetted libraries. In this case, you vigorously maintain your configurations,
updating your dependencies and regression testing as soon as new versions of HyperSQL are vetted. To get the best
performance and reliability from HyperSQL, you should urge the appropriate parties to vet new versions as soon
as they are publicly released.

• You need precisely reproducible builds.

If none of these situations apply to you, then follow the suggestions in the appropriate sections below. If you need
to specify a specific version, follow the instructions in the range-versioning section but change the version range
specifications to literal versions like 2.7.1.

Range Versioning
Keeping up-to-date with Range Dependencies

Limitation of Maven Version Range Specifiers

Note that Ivy (and the many systems that use Ivy underneath, like Grape and Gradle) supports the
opening exclusive] in addition to [, whereas Maven supports only the opening inclusive [specifier.
See the relevant Ivy [http://ant.apache.org/ivy/history/latest-milestone/ivyfile/dependency.html]
or Maven [http://docs.codehaus.org/display/MAVEN/Dependency+Mediation+and+Conflict
+Resolution#DependencyMediationandConflictResolution-DependencyVersionRanges]
documentation for details. There are special cases where you should depend on a specific version instead.

http://ant.apache.org/ivy/history/latest-milestone/ivyfile/dependency.html
http://ant.apache.org/ivy/history/latest-milestone/ivyfile/dependency.html
http://docs.codehaus.org/display/MAVEN/Dependency+Mediation+and+Conflict+Resolution#DependencyMediationandConflictResolution-DependencyVersionRanges
http://docs.codehaus.org/display/MAVEN/Dependency+Mediation+and+Conflict+Resolution#DependencyMediationandConflictResolution-DependencyVersionRanges
http://docs.codehaus.org/display/MAVEN/Dependency+Mediation+and+Conflict+Resolution#DependencyMediationandConflictResolution-DependencyVersionRanges

Deployment Guide

280

Range Dependency Specification Examples

Important

For all examples below, when a range pattern is given, it means the latest version equal or greater than
version 2. If a classifier is shown, it is optional and you can skip it to get the default (no-classifier) jar.

Example 12.3. Sample Range Ivy Dependency

 <dependency org="org.hsqldb" name="hsqldb" rev="[2,)" conf="j8->default"/>

I give no example here of specifying a classifier in ivy.xml because I have so far failed to get that to succeed.
Classifiers in in ivy.xml are supported if using Gradle, as covered below.

At the time that I'm writing this, our builds are providing two classifiers (besides the default no-classifier, of course)
named "debug" and "jdk8". In all examples for using a classifier I am using classifier name "debug".

Example 12.4. Sample Range Maven Dependency

See note above about Maven range specifications.

 <dependency>
 <groupId>org.hsqldb</groupId>
 <artifactId>hsqldb</artifactId>
 <version>[2,)</version>
 <!-- Scope defaults to "compile":
 <scope>test</scope>
 Use a classifier to pull one of our alternative jars:
 <classifier>debug</classifier>
 -->
 </dependency>

Example 12.5. Sample Range Gradle Dependency

 dependencies.compile 'org.hsqldb:hsqldb:[2,):debug'
 dependencies {
 runtime 'org.hsqldb:hsqldb:[2,):debug@jar',
 'org.hsqldb:sqltool:[2,):debug@jar'
 }

If you want to use an ivy.xml file with a Gradle build, you will need use the Ivyxml Gradle Plugin [https://
github.com/unsaved/gradle-ivyxml-plugin]. It just takes a few links of code in your build.gradle file to
hook in ivyxml. See the Ivyxml documentation [https://github.com/unsaved/gradle-ivyxml-plugin/raw/master/
README.txt] to see exactly how.

Example 12.6. Sample Range ivy.xml loaded by Ivyxml plugin

 <ivy-module version="2.0" xmlns:m="http://ant.apache.org/ivy/maven">
 ...
 <dependency org="org.hsqldb" name="hsqldb" rev="[2,)" m:classifier="debug"/>

Example 12.7. Sample Range Groovy Dependency, using Grape

https://github.com/unsaved/gradle-ivyxml-plugin
https://github.com/unsaved/gradle-ivyxml-plugin
https://github.com/unsaved/gradle-ivyxml-plugin
https://github.com/unsaved/gradle-ivyxml-plugin/raw/master/README.txt
https://github.com/unsaved/gradle-ivyxml-plugin/raw/master/README.txt
https://github.com/unsaved/gradle-ivyxml-plugin/raw/master/README.txt

Deployment Guide

281

@Grab('org.hsqldb:hsqldb:[2,):debug')

282

Chapter 13. Compatibility With Other DBMS

Fred Toussi, The HSQL Development Group
$Revision: 3096 $

Copyright 2010-2022 Fred Toussi. Permission is granted to distribute this document without any alteration
under the terms of the HSQLDB license. Additional permission is granted to the HSQL Development Group
to distribute this document with or without alterations under the terms of the HSQLDB license.
2022-10-20

Compatibility Overview
HyperSQL is used more than any other database engine for application testing and development targeted at other
databases. Over the years, this usage resulted in developers finding and reporting many obscure bugs and opportunities
for enhancements in HyperSQL. The bugs were all fixed shortly after the reports and enhancements were added in
later versions.

HyperSQL 2.x has been written to the SQL Standard and avoids the traps caused by superficial imitation of the
Standard by some other RDBMS. The SQL Standard has existed since 1989 and has been expanded over the years in
several revisions. HyperSQL follows SQL:2016, which still stays almost fully compatible with SQL-92. The X-Open
specification has also defined a number of SQL functions which are implemented by most RDBMS.

HyperSQL has many property settings that relax conformance to the Standard in order to allow compatibility with other
RDBMS, without breaking the core integrity of the database. These properties are modified with SET DATABASE
SQL statements described in the SQL Conformance Settings section of Management chapter.

HyperSQL is very flexible and provides some other properties which define a preference among various valid choices.
For example, the ability to set the transaction model of the database, or the ability to define the scale of the data type
of the result of integer division or average calculation (SET DATABASE SQL AVG SCALE).

Each major RDBMS supports additional functions that are not covered by the Standard. Some RDBMS use non-
standard syntax for some operations. Although most popular RDBMS products have introduced better compatibility
with the Standard in their recent versions, there are still some portability issues. HyperSQL overcomes the potability
issues using these strategies

• An extensive set of functions cover the SQL Standard, X-Open, and most of the useful functions that other RDBMS
support.

• Database properties, which can be specified on the URL or as SQL statements, relax conformance to the Standard
in order to allow non-standard comparisons and assignments allowed by other RDBMS.

• Specific SQL syntax compatibility modes allow syntax and type names that are supported by some popular RDBMS.

• User-defined types and functions, including aggregate functions, allow any type or function that is supported by
some RDBMS to be defined and used.

Support for compatibility with other RDBMS has been extended with each version of HyperSQL. This chapter lists
some of the non-standard features of database servers, their SQL Standard equivalents or the support provided by
HyperSQL for those features.

PostgreSQL Compatibility
PostgreSQL is fairly compatible with the Standard, but uses some non-standard features.

Compatibility With Other DBMS

283

• Use SET DATABASE SQL SYNTAX PGS TRUE or the equivalent URL property sql.syntax_pgs=true to
enable the PostgreSQL's non-standard features. References to SERIAL, BIGSERIAL, TEXT and UUID data types,
as well as sequence functions, are translated into HyperSQL equivalents.

• The case of unquoted identifiers is non-standard in PostgreSQL, which stores these identifiers in lowercase
instead of uppercase. Use SET DATABASE SQL LOWER CASE IDENTIFIER or the URL property
sql.lowercase_ident=true to change the case of unquoted identifiers (table names and column names) to
lowercase in ResultSetMetaData.

• Use SET DATABASE TRANSACTION CONTROL MVCC if your application is multi-user.

• PostgreSQL functions are generally supported.

• For identity columns, PostgreSQL uses a non-standard linkage with an external identity sequence. In most cases,
this can be converted to GENERATED BY DEFAULT AS IDENTITY. In those cases where the identity sequence
needs to be shared by multiple tables, you can use a new HyperSQL feature, GENERATED BY DEFAULT AS
SEQUENCE <sequence name>, which is the equivalent of the PostgreSQL implementation.

• In CREATE TABLE statements, the SERIAL and BIGSERIAL types are translated into INTEGER or BIGINT,
with GENERATED BY DEFAULT AS IDENTITY. Usage of DEFAULT NEXTVAL(<sequence name>)
is supported so long as the <sequence name> refers to an existing sequence. This usage is translated into
GENERATED BY DEFAULT AS SEQUENCE <sequence name>.

• In SELECT and other statements, the NEXTVAL(<sequence name>) and LASTVAL() functions are supported
and translated into HyperSQL's NEXT VALUE FOR <sequence name> and IDENTITY() expressions.

• PostgreSQL uses a non-standard expression, SELECT 'A Test String' to return a single row table. The
standard form is VALUES('A Test String'). In PGS syntax mode, this type of SELECT is supported.

• HyperSQL supports SQL Standard ARRAY types. PostgreSQL also supports this, but not entirely according to the
Standard.

• SQL routines are portable, but some syntax elements are different and require changes.

• You may need to use SET DATABASE SQL TDC { DELETE | UPDATE } FALSE statements, as PostgreSQL
does not enforce the subtle rules of the Standard for foreign key cascading deletes and updates. PostgreSQL allows
cascading operations to update a field value multiple times with different values, the Standard disallows this.

MySQL Compatibility
HyperSQL version 2.7 is highly compatible with MySQL and supports most of its non-standard syntax. The latest
versions of MySQL have introduced better Standard compatibility but some of these features have to be turned on via
properties. You should therefore check the current Standard compatibility settings of your MySQL database and use
the available HyperSQL properties to achieve closer results. If you avoid the few anti-Standard features of MySQL,
you can port your databases to HyperSQL and make it easier to port to other database engines.

Using HyperSQL during development and testing of MySQL apps helps to avoid data integrity issues that MySQL
may ignore.

HyperSQL does not have the following non-standard limitations of MySQL.

• With HyperSQL, an UPDATE statement can update UNIQUE and PRIMARY KEY columns of a table without
causing an exception due to temporary violation of constraints. These constraints are checked at the end of execution,
therefore there is no need for an ORDER BY clause in an UPDATE statement.

• MySQL foreign key constraints are not enforced by the MyISAM engine. Be aware of the possibility of data being
rejected by HyperSQL due to these constraints.

Compatibility With Other DBMS

284

• With HyperSQL INSERT or UPDATE statements either succeed or fail due to constraint violation. MySQL has the
non-standard IGNORE override to ignore violations and alter the data, which is not accepted by HyperSQL.

• Unlike MySQL, HyperSQL allows you to modify a table with an INSERT, UPDATE or DELETE statement which
selects from the same table in a subquery.

Follow the guidelines below for converting MySQL databases and applications.

• Use SET DATABASE SQL SYNTAX MYS TRUE or the equivalent URL property sql.syntax_mys=true
to enable support for MySQL features.

• The case of unquoted identifiers is non-standard in MySQL, which stores these identifiers in the original case but
compares them regardless of case. If you use lower-case unquoted identifiers in MySQL, use SET DATABASE
SQL LOWER CASE IDENTIFIER or the URL property sql.lowercase_ident=true to change the case of
unquoted identifiers (table names and column names) to lowercase in ResultSetMetaData.

• Use MVCC with SET DATABASE TRANSACTION CONTROL MVCC if your application is multi-user.

• Avoid storing invalid values, for example invalid dates such as '0000-00-00' or '2001-00-00' which are rejected by
HyperSQL.

• Avoid the MySQL feature that trims spaces at the end of CHAR values.

• In MySQL, a database is the same as a schema. In HyperSQL, several schemas can exist in the same database and
accessed transparently. In addition, a HyperSQL server supports multiple separate databases.

• In MySQL, older, non-standard, forms of database object name case-sensitivity make is difficult to port applications.
The modern form, which encloses case-sensitive names in double quotes, follows the SQL standard and is supported
by HyperSQL. Use of the backtick character for case-sensitive names, only allowed by MySQL, is also supported
and is translated to double quotes.

• Almost all MySQL functions are supported, including GROUP_CONCAT.

• For fine control over type conversion, check the settings for SET DATABASE SQL CONVERT TRUNCATE
FALSE

• Avoid using concatenation of possibly NULL values in your select statements. If you have to, change the setting
with the SET DATABASE SQL CONCAT NULLS FALSE

• If your application relies on MySQL behaviour for ordering of nulls in SELECT statements with ORDER BY, use
both SET DATABASE SQL NULLS FIRST FALSE and SET DATABASE SQL NULLS ORDER FALSE
to change the defaults.

• In CREATE TABLE, MySQL syntax for KEYS, INDEX, COMMENT and some other features is supported.

• MySQL supports most SQL Standard types (except INTERVAL types), as well as non-standard types, which are also
supported by HyperSQL. Supported types include SMALLINT, INT, BIGINT, DOUBLE, FLOAT, DECIMAL,
NUMERIC, VARCHAR, CHAR, BINARY, VARBINARY, BLOB, DATE, TIMESTAMP (all Standard SQL).
Non Standard types such as AUTO_INCREMENT, TINYINT, DATETIME, TEXT, TINYLOB, MEDIUMLOB
are also supported. UNSIGNED types are converted to signed. These type definitions are translated into HyperSQL
equivalents.

• In MYS syntax compatibility mode, HyperSQL translates MySQL's ENUM data type to VARCHAR with a check
constraint on the enum values.

• In MYS syntax compatibility mode, HyperSQL supports MySQL's non-standard version of INTERVAL symbols
such as DAY_HOUR and DAY_SECOND in DATEADD and DATESUB functions. The SQL Standard form is
DAY TO HOUR or DAY TO SECOND.

Compatibility With Other DBMS

285

• MySQL uses a non-standard expression, SELECT 'A Test String' to return a single row table. The standard
form is VALUES('A Test String'). In MYS syntax mode, this type of SELECT is supported.

• Indexes defined inside CREATE TABLE statements are accepted and created. The index names must be unique
within the schema.

• HyperSQL supports ON UPDATE CURRENT_TIMESTAMP for column definitions in CREATE TABLE
statements.

• HyperSQL supports and translates INSERT IGNORE, REPLACE and ON DUPLICATE KEY UPDATE variations
of INSERT into predictable and error-free operations. These MySQL variations do not throw an exception if any of
the inserted rows would violate a PRIMARY KEY or UNIQUE constraint, and take a different action instead.

When INSERT IGNORE is used, if any of the inserted rows would violate a PRIMARY KEY or UNIQUE constraint,
that row is not inserted. With multi-row inserts, the rest of the rows are then inserted only if there is no other violation
such as long strings or type mismatch, otherwise the appropriate error is returned.

When REPLACE or ON DUPLICATE KEY UPDATE is used, the rows that need replacing or updating are updated
with the given values. This works exactly like an UPDATE statement for those rows. Referential constraints and
other integrity checks are enforced and update triggers are activated. The row count returned is simply the total
number of rows inserted and updated.

With all the above statements, unique indexes are not considered the same as unique constraints for the alternative
action and an exception is thrown if there is violation of a unique index. It is generally better to create a unique
constraint instead of a unique index.

• MySQL user-defined function and procedure syntax is very similar to SQL Standard syntax supported by HSQLDB.
A few changes may still be required.

Firebird Compatibility

Firebird generally follows the SQL Standard. Applications can be ported to HyperSQL without difficulty.

Apache Derby Compatibility

Apache Derby supports a smaller subset of the SQL Standard compared to HyperSQL. Applications can be ported to
HyperSQL without difficulty.

• Use MVCC with SET DATABASE TRANSACTION CONTROL MVCC if your application is multi-user.

• HyperSQL supports Java language functions and stored procedures with the SQL Standard syntax, which is similar
to the way Derby supports these features.

Oracle Compatibility

Recent versions of Oracle support Standard SQL syntax for outer joins and many other operations. In addition,
HyperSQL features a setting to support Oracle syntax and semantics for the most widely used non-standard features.

• Use SET DATABASE SQL SYNTAX ORA TRUE or the equivalent URL property sql.syntax_ora=true
to enable support for some non-standard syntax of Oracle.

• Use MVCC with SET DATABASE TRANSACTION CONTROL MVCC if your application is multi-user.

• Fine control over MVCC deadlock avoidance is provided by the SET DATABASE TRANSACTION ROLLBACK
ON CONFLICT FALSE and the corresponding hsqldb.tx_conflict_rollback connection property.

Compatibility With Other DBMS

286

• If your application relies on Oracle behaviour for nulls in multi-column UNIQUE constraints, use SET DATABASE
SQL UNIQUE NULLS FALSE to change the default.

• If your application relies on Oracle behaviour for ordering of nulls in SELECT statements with ORDER BY, but
without NULLS FIRST or NULLS LAST, use both SET DATABASE SQL NULLS FIRST FALSE and SET
DATABASE SQL NULLS ORDER FALSE to change the defaults.

• If you use the non-standard concatenation of possibly NULL values in your select statements, you may need to
change the setting for SET DATABASE SQL CONCAT NULLS FALSE.

• You may want to use SET DATABASE COLLATION SQL_TEXT NO PAD to take into account differences in
trailing spaces in string comparisons.

• Many Oracle functions are supported, including no-arg functions such as SYSDATE and SYSTIMESTAMP and
more complex ones such as TO_DATE and TO_CHAR.

• Non-standard data type definitions such as NUMBER, VARCHAR2, NVARCHAR2, BINARY_DOUBLE,
BINARY_FLOAT, LONG, RAW are translated into the closest SQL Standard equivalent in ORA mode.

• Non-standard column DEFAULT definitions in CREATE TABLE, such as the use of DUAL with a SEQUENCE
function are supported and translated in ORA syntax mode.

• The DATE type is interpreted as TIMESTAMP(0) in ORA syntax mode.

• The DUAL table and the expressions, ROWNUM, CURRVAL, NEXTVAL are supported in ORA syntax mode.

• HyperSQL natively supports operations involving datetime and interval values. These features are based on the
SQL Standard.

• Many subtle automatic type conversions, syntax refinements and other common features are supported.

• SQL routines in PL/SQL are generally portable, but some changes are required.

• More advanced compatibility is offered by HyperXtremeSQL, which is a product based on HyperSQL. It supports
more function compatibility, the PL/HXSQL language with a similar syntax to PL/SQL, extensive support for
additional aggregate functions, window analytic functions with OVER(PARTITION ... ORDER ... ROWS |
RANGE ...) and WITHIN GROUP (ORDER BY).

DB2 Compatibility
DB2 is highly compatible with the SQL Standard (except for its lack of support for the INFORMATION_SCHEMA).
Applications can be ported to HyperSQL without difficulty.

• Use SET DATABASE SQL SYNTAX DB2 TRUE or the equivalent URL property sql.syntax_db2=true
to enable support for some non-standard syntax of DB2.

• Use MVCC with SET DATABASE TRANSACTION CONTROL MVCC if your application is multi-user.

• HyperSQL supports almost the entire syntax of DB2 together with many of the functions. Even local temporary
tables using the SESSION pseudo schema are supported.

• The DB2 binary type definition FOR BIT DATA, as well as empty definition of column default values are supported
in DB2 syntax mode.

• Many DB2 functions are supported.

• The DUAL table and the expressions, ROWNUM, CURRVAL, NEXTVAL are supported in DB2 syntax mode.

Compatibility With Other DBMS

287

• SQL routines are highly portable with minimal change.

• More advanced compatibility is offered by HyperXtremeSQL, which is a product based on HyperSQL. It has
extensive support for additional aggregate functions, window analytic functions with OVER(PARTITION ...
ORDER BY ... ROWS | RANGE ...) and WITHIN GROUP (ORDER BY ...).

MS SQLServer and Sybase Compatibility

SQLServer has some incompatibilities with the Standard syntax. The most significant is the use of square brackets
instead of double quotes for case-sensitive column names.

• Use SET DATABASE SQL SYNTAX MSS TRUE or the equivalent URL property sql.syntax_mss=true
to enable support for the CONVERT(<type definition>, <expression) function with switched order
of arguments

• Use MVCC with SET DATABASE TRANSACTION CONTROL MVCC if your application is multi-user.

• If you use the non-standard concatenation of possibly NULL values in your select statements, you may need to
change the setting for SET DATABASE SQL CONCAT NULLS FALSE.

• HyperSQL supports + for string concatenation.

• SQLServer uses a non-standard expression, SELECT 'A Test String' to return a single row table. The
standard form is VALUES('A Test String'). In MSS syntax mode, this type of SELECT is supported.

• SQLServer's non-standard data types, MONEY, UNIQUEIDENTIFIER, DATETIME2, DATETIMEOFFSET,
IMAGE, TEXT, NTEXT, are translated to their SQL Standard equivalents.

• HyperSQL 2.7 supports several datetime functions in MSS compatibility mode. These include DATEPART,
DATENAME, EOMONTH and compatible DATEADD and DATEDIFF behaviour.

• SQL routines need quite a lot of changes.

• More advanced compatibility is offered by HyperXtremeSQL, which is a product based on HyperSQL. It has
extensive support for additional aggregate functions, window analytic functions with OVER(PARTITION ...
ORDER BY ... ROWS | RANGE ...) and WITHIN GROUP (ORDER BY ...).

288

Chapter 14. Properties

Fred Toussi, The HSQL Development Group
$Revision: 6491 $

Copyright 2002-2022 Fred Toussi. Permission is granted to distribute this document without any alteration
under the terms of the HSQLDB license. Additional permission is granted to the HSQL Development Group
to distribute this document with or without alterations under the terms of the HSQLDB license.
2022-10-20

Connection URL
The normal method of accessing a HyperSQL catalog is via the JDBC Connection interface. An introduction
to different methods of providing database services and accessing them can be found in the Running and
Using HyperSQL chapter. Details and examples of how to connect via JDBC are provided in our JavaDoc for
JDBCConnection .

A uniform method is used to distinguish between different types of connection. The common driver identifier is
jdbc:hsqldb: followed by a protocol identifier (mem: file: res: hsql: http: hsqls: https:) then followed by host
and port identifiers in the case of servers, then followed by database identifier. Additional property / value pairs can
be appended to the end of the URL, separated with semicolons.

Table 14.1. Memory Database URL

Driver and Protocol Host and Port Example Database Example

jdbc:hsqldb:mem: not available accounts

Lowercase, single-word identifier creates the in-memory database when the first connection is made.
Subsequent use of the same Connection URL connects to the existing DB. Multiple in-memory databases
can be created with different database names. For example, first connections to jdbc:hsqldb:mem:db1,
jdbc:hsqldb:mem:db2, and jdbc:hsqldb:mem:accounts create three completely separate databases
in the Java virtual machine. A second connection to jdbc:hsqldb:mem:accounts connects to the database
created by the first connection. A database stays in memory until the SQL command, SHUTDOWN is executed.

The old form for the URL, jdbc:hsqldb:. creates or connects to the same database as the new form for the
URL, jdbc:hsqldb:mem:.

Table 14.2. File Database URL

Driver and Protocol Host and Port Example Database Example

jdbc:hsqldb:file: not available accounts
/opt/db/accounts
C:/data/mydb

The file path specifies the database files. It should consist of a relative or absolute path to the directory
containing the database files, followed by a '/' and the database name. In the above examples the first one,
jdbc:hsqldb:file:accounts refers to a set of accounts.* files in the directory where the java
command for running the application was issued. The second and third examples refer to absolute paths on the host
machine: For example, jdbc:hsqldb:file:/opt/db/accounts refers to files named accounts.* in
the directory /opt/db which contain the accounts database.

Properties

289

Table 14.3. Resource Database URL

Driver and Protocol Host and Port Example Database Example

jdbc:hsqldb:res: not available /adirectory/dbname

Database files can be loaded from one of the jars specified as part of the Java command the same way as resource
files are accessed in Java programs. The /adirectory above stands for a directory in one of the jars.

Table 14.4. Server Database URL

Driver and Protocol Host and Port Example Database Example

jdbc:hsqldb:hsql:
jdbc:hsqldb:hsqls:
jdbc:hsqldb:http:
jdbc:hsqldb:https:

//localhost
//192.0.0.10:9500
//dbserver.somedomain.com

/accounts
/enrolments
/quickdb

The host and port specify the IP address or host name of the server and an optional port number. The database to
connect to is specified by an alias. This alias is a lowercase string defined in the server.properties file to
refer to an actual database on the file system of the server or a transient, in-memory database on the server. The
alias for a database can have a different name to its memory or file name. The lines in server.properties or
webserver.properties define the database aliases listed above and accessible to clients to refer to different
file and in-memory databases. In the example below, the file: database named mydb is made accessible with the
alias enrolments.

server.database.1=file:/opt/db/mydb

server.dbname.1=enrolments

The old form for the server URL, e.g., jdbc:hsqldb:hsql//localhost connects to the same database as
the new form for the URL, jdbc:hsqldb:hsql//localhost/ where the alias is a zero length string.

Variables in Connection URL
If the database part of a file: database begins with ~/ or ~\ the tilde character is replaced with the value of the
system property "user.home" resulting in the database being created or accessed in this directory, or one of its
subdirectories. In the examples below, the database files for mydb and filedb are located in the user's home
directory.

 jdbc:hsqldb:file:~/mydb
 jdbc:hsqldb:file:~/filedb;shutdown=true

If the database URL contains a string in the form of ${propname} then the sequence of characters is replaced with
the system property with the given name. For example, you can use this in the URL of a database that is used in a web
application and define the system property, "propname" in the web application properties. In the example below, the
string ${mydbpath} is replaced with the value of the property, mydbpath

 jdbc:hsqldb:file:${mydbpath}

Connection Properties
There are two types of connection properties: properties for individual connections, and properties for the whole
database.

The properties for individual connections apply only to the connection that uses them and can be different for different
connections. These properties can be used when connecting to in-process and server databases.

Properties

290

The properties for the database apply to the whole database. These properties have an effect only if used for the first
connection to an in-process file: or mem: database. For the connection that creates a new database all the user-defined
database properties can be specified as URL properties.

A few of the properties for the database can be applied to an existing database when the database is reopened after
a shutdown.

When running a server, these properties are not used on the connection URL but can be appended to the database path
URL in server.properties or the server command line.

Almost all properties for the database listed in this chapter have corresponding SQL statements which can be used
after connecting to the database. The SQL statement for each property is listed here.

Properties for Individual Connections
Each JDBC Connection to a database can specify connection properties. The properties user and password are always
required. The following optional properties can also be used.

Connection properties are specified either by using a Java Properties object when establishing the connection via the
JDBC method call below. Alternatively the property can be appended to the full Connection URL.

 DriverManager.getConnection (String url, Properties info);

Table 14.5. User and Password

Name Default Description

user SA user name

Standard property. This property is case sensitive. Example below:

 jdbc:hsqldb:file:enrolments;user=aUserName;password=pass

password empty
string

password for the user

Standard property. This property is case sensitive. Example below:

 jdbc:hsqldb:file:enrolments;user=aUserName;password=3xLVz

For compatibility with other engines, a non-standard form of specifying user and password is also supported. In
this form, user name and password appear at the end of the URL string, prefixed respectively with the question
mark and the ampersand:

 jdbc:hsqldb:file:enrolments;create=false?user=aUserName&password=3xLVz

Table 14.6. Closing old ResultSet when Statement is reused

Name Default Description

close_result false closing the old result set when a new ResultSet is
created by a Statement

This property is used for compatibility with the JDBC specification. When true (the JDBC specification), a
ResultSet that was previously returned by executing a Statement or PreparedStatement is closed as
soon as the Statement is executed again.

The default is false as previous versions of HSQLDB did not close old result set. The user application should close
old result sets when they are no longer needed and should not rely on auto-closing side effect of executing the
Statement.

Properties

291

Name Default Description

The default is false. When the property is true, the old ResultSet is closed when a Statement is re-executed.
Example below:

 jdbc:hsqldb:hsql://localhost/enrolments;close_result=true

When a ResultSet is used inside a user-defined stored procedure, the default, false, is always used for this
property.

Table 14.7. Column Names in JDBC ResultSet

Name Default Description

get_column_name true column name in ResultSet

This property is used for compatibility with other JDBC driver implementations. When true (the default),
ResultSet.getColumnName(int c) returns the underlying column name. This property can be specified
differently for different connections to the same database.

The default is true. When the property is false, the above method returns the same value as
ResultSet.getColumnLabel(int column) Example below:

 jdbc:hsqldb:hsql://localhost/enrolments;get_column_name=false

When a ResultSet is used inside a user-defined stored procedure, the default, true, is always used for this
property.

Table 14.8. In-memory LOBs from JDBC ResultSet

Name Default Description

memory_lobs false lobs retrieved in full from server by ResultSet

This property can be set to retrieve lobs as fully in-memory objects by the JDBC driver. When false (the default),
ResultSet methods for streaming BLOB and CLOB retrieve large lobs in chunks in order to limit memory
use on the client. When true, the lob is returned fully as soon as it is streamed. This property can be specified
differently for different connections to the same database.

The default is false.

 jdbc:hsqldb:hsql://localhost/enrolments;memory_lobs=true

Table 14.9. Empty batch in JDBC PreparedStatement

Name Default Description

allow_empty_batch false executeBatch with empty batch

This property is used for compatibility with other JDBC driver implementations such as the PostgreSQL driver. By
default PreparedStatement.executeBatch() throws an exception if addBatch() has not been called at
all. Setting this property to true ignores the empty batch and returns an empty int[]. This property can be specified
differently for different connections to the same database.

The default is false. Example below:

 jdbc:hsqldb:hsql://localhost/enrolments;allow_empty_batch=true

When a PreparedStatement is used inside a user-defined stored procedure, the default, false, is always used
for this property.

Properties

292

Table 14.10. Automatic Shutdown

Name Default Description

shutdown false shut down the database when the last connection is closed

Has an effect only with mem: and file: databases. If this property is true, when the last connection to a database
is closed, the database is automatically shut down. The property takes effect only when the first connection is
made to the database. This means the connection that opens the database. It has no effect if used with subsequent
connections.

This command has two uses. One is for test suites, where connections to the database are made from one JVM
context, immediately followed by another context. The other use is for applications where it is not easy to
configure the environment to shutdown the database. Examples reported by users include web application servers,
where the closing of the last connection coincides with the web app being shut down. Note the automatic shutdown
happens in a background thread and the Connection.close() call returns before the shutdown is complete. This may
cause an issue if the shutdown takes a long time to save the data and the user application (or unit test) immediately
reopens the database while this is happening. In these contexts, use an explicit SHUTDOWN as an SQL statement.

 jdbc:hsqldb:file:enrolments;shutdown=true

Table 14.11. OpenOffice and Libre Office usage

Name Default Description

default_schema false OpenOffice and LibreOffice connections

When HyperSQL is used with OpenOffice.org as an external database, the property "default_schema=true" must be
set on the URL, otherwise the program will not operate correctly as it does with its built-in hsqldb instance.

The default is false.

 jdbc:hsqldb:hsql://localhost/enrolments;default_schema=true

Properties for the Database
Each database has several default settings (properties) that are listed in the System Management chapter. These
properties can be changed via SQL commands after a connection is made to the database. It is also possible to specify
most of these properties in the connection properties or as part of the URL string when the first connection is made to a
new file: or mem: database. This allows the properties to be set without using any SQL commands. The corresponding
SQL command is given for each property. For a server, these properties can be appended to the database path URL
in server.properties or the server command line.

When connecting to an in-process database creates a new database, or opens an existing database (i.e. it is the first
connection made to the database by the application), all the user-defined database properties listed in this section can
be specified as URL properties.

Note the preferred method of setting database properties is by using a set of SQL statements. These statements can
be used both for a new database or an existing database, unlike URL properties that are generally effective for new
databases only.

If these properties are used for connection to an existing database, they are ignored.

The exceptions are the following property settings that are allowed for the first connection to an
existing database (the connection which reopens the database): readonly=true, files_readonly=true,
hsqldb.lock_file=false, hsqldb.sqllog=1-3, hsqldb.applog=1-3. These specific property /

Properties

293

value pairs override the existing database properties. For example a normal database is opened as readonly, or the lock
file is not created, or the sql log level is set to a value between 1 and 3.

Properties for database encryption and compressed .script file are also required on the first connection to an existing
database.

Management of properties has changed since version 1.8. The old SET PROPERTY statement does not change a
property and is ignored. The statement is retained to simplify application upgrades.

In the example URL below, two properties are set for the first connection to a new database.

 jdbc:hsqldb:file:enrolments;hsqldb.cache_rows=10000;hsqldb.nio_data_file=false

In the table below, database properties that can be used as part of the URL or in connection properties are listed. For
each property that can also be set with an SQL statement, the statement is also given. These statements are described
more extensively in the System Management chapter.

Table 14.12. Validity Check Property

Name Default Description

check_props false checks the validity of the database properties

If the property is true, every database property that is specified on the URL or in connection properties is checked
and if it is not used correctly, an error is returned.

this property cannot be set with an SQL statement

Table 14.13. Creating New Database Check Property

Name Default Description

ifexists false connect only if database already exists

Has an effect only with mem: and file: database. When true, will not create a new database if one does not already
exist for the URL.

When the property is false (the default), a new mem: or file: database will be created if it does not exist.

Setting the property to true is useful when troubleshooting as no database is created if the URL is malformed.
Example below:

 jdbc:hsqldb:file:accounts;ifexists=true

create true create the database if it does not exist

Similar to the ifexists property, but with opposite meaning.

Has an effect only with mem: and file: databases. When false, will not create a new database if one does not already
exist for the URL.

When the property is true (the default), a new mem: or file: database will be created if it does not exist.

Setting the property to true is useful when troubleshooting as no database is created if the URL is malformed.
Example below:

 jdbc:hsqldb:file:enrolments;create=false

Properties

294

SQL Conformance Properties

Table 14.14. Execution of Multiple SQL Statements etc.

Name Default Description

sql.restrict_exec false preventS execution of multiple, concatenated SQL
statements

This property, when set true, prevents execution of multiple, concatenated statements via
Statement.execute() and other methods of java.sql.Statement. It also prevents the use of
Statement.executeQuery() for any DDL or DML statement.

Legacy applications may contain such statements, for example "INSERT INTO T1 VALUES 1, 2,
3;DELETE FROM T2 WHERE C1 = 9"; therefore the default is false. Statements that are prepared with
java.sql.PreparedStatement have been limited to single statements since HyperSQL 2.0.

It is recommended to set this property to TRUE and use single execution of statements.

SET DATABASE SQL RESTRICT EXEC { TRUE | FALSE }

Table 14.15. SQL Keyword Use as Identifier

Name Default Description

sql.enforce_names false enforcing SQL keywords

This property, when set true, prevents SQL keywords being used for database object names such as columns and
tables.

SET DATABASE SQL NAMES { TRUE | FALSE }

Table 14.16. SQL Keyword Starting with the Underscore or Containing Dollar Characters

Name Default Description

sql.regular_names true enforcing SQL keywords

This property, when set true, prevents database object names such as columns and tables beginning with the
underscore or containing the dollar character.

SET DATABASE SQL REGULAR NAMES { TRUE | FALSE }

Table 14.17. Reference to Columns Names

Name Default Description

sql.enforce_refs false enforcing column reference disambiguation

This property, when set true, causes an error when an SQL statement (usually a select statement) contains column
references that can be resolved by more than one table name or alias. In effect forces such column references to
have a table name or table alias qualifier.

SET DATABASE SQL REFERENCES { TRUE | FALSE }

Table 14.18. String Size Declaration

Name Default Description

sql.enforce_size true size enforcement of string columns

Properties

295

Name Default Description

Conforms to SQL standards for size and precision of data types. When true, all VARCHAR column type
declarations require a size. When the property is false and there is no size in the declaration, a default size is used.
Note that all other types accept a declaration without a size, which is interpreted as a default size.

SET DATABASE SQL SIZE { TRUE | FALSE }

Table 14.19. Truncation of trailing spaces from string

Name Default Description

sql.truncate_trailing true truncation of long strings with trailing spaces

When a string that is longer than the maximum size of a column is inserted, the default behaviour is to remove any
trailing spaces until the length of the string equals the maximum size of the column. When this property is set to
false, long strings are always rejected and an exception is raised.

SET DATABASE SQL TRUNCATE TRAILING { TRUE | FALSE }

Table 14.20. Type Enforcement in Comparison and Assignment

Name Default Description

sql.enforce_types false enforcing type compatibility

This property, when set true, causes an error when an SQL statements contains comparisons or assignments that are
non-standard due to type mismatch. Most illegal comparisons and assignments will cause an exception regardless
of this setting. This setting applies to a small number of comparisons and assignments that are possible, but not
standard conformant, and were allowed in previous versions of HSQLDB.

SET DATABASE SQL TYPES { TRUE | FALSE }

Table 14.21. Foreign Key Triggered Data Change

Name Default Description

sql.enforce_tdc_delete true enforcing triggered data change violation for deletes

The ON DELETE and ON UPDATE clauses of constraints cause data changes in rows in different tables or the
same table. When there are multiple constraints, a row may be updated by one constraint and deleted by another
constraint in the same operation. This is not allowed by default. Changing this property to false allows such
violations of the Standard to pass without an exception. Used for porting from database engines that do not enforce
the constraints.

SET DATABASE SQL TDC DELETE { TRUE | FALSE }

sql.enforce_tdc_update true enforcing triggered data change violation for updates

The ON DELETE and ON UPDATE clauses of foreign key constraints cause data changes in rows in different
tables or the same table. With multiple constraint, a field may be updated by two constraints and set to different
values. This is not allowed by default. Changing this property to false allows such violations of the Standard to
pass without an exception. Used for porting from database engines that do not enforce the constraints properly.

SET DATABASE SQL TDC UPDATE { TRUE | FALSE }

Properties

296

Table 14.22. Use of LOB for LONGVAR Types

Name Default Description

sql.longvar_is_lob false translating longvarchar and longvarbinary to lob

This property, when set true, causes type declarations using LONGVARCHAR and LONGVARBINARY to be
translated to CLOB and BLOB respectively. By default, they are translated to VARCHAR and VARBINARY.

SET DATABASE SQL LONGVAR IS LOB { TRUE | FALSE }

Table 14.23. Type of string literals in CASE WHEN

Name Default Description

sql.char_literal true result of CASE WHEN with strings of different lengths

This property, when set false, sets the type of all string literal to VARCHAR, as opposed to CHARACTER. This
results in strings not being padded with spaces by CASE WHEN expressions.

SET DATABASE SQL CHARACTER LITERAL { TRUE | FALSE }

Table 14.24. Concatenation with NULL

Name Default Description

sql.concat_nulls true behaviour of concatenation involving one null

This property, when set false, causes the concatenation of a null and a not null value to return the not null value. By
default, it returns null.

SET DATABASE SQL CONCAT NULLS { TRUE | FALSE }

Table 14.25. NULL in Multi-Column UNIQUE Constraints

Name Default Description

sql.unique_nulls true behaviour of multi-column UNIQUE constraints with null
values

This property, when set false, causes multi-column unique constrains to be more restrictive for value sets that
contain a mix of null and not null values.

SET DATABASE SQL UNIQUE NULLS { TRUE | FALSE }

Table 14.26. Truncation or Rounding in Type Conversion

Name Default Description

sql.convert_trunc true behaviour of type conversion from DOUBLE to integral
types

This property, when set false, causes type conversions from DOUBLE to any integral type to use rounding. By
default truncation is used.

SET DATABASE SQL CONVERT TRUNCATE { TRUE | FALSE }

Properties

297

Table 14.27. Decimal Scale of Division and AVG Values

Name Default Description

sql.avg_scale 0 decimal scale of values returned by division and the AVG
and MEDIAN aggregate functions

By default, the result of a division or an AVG or MEDIAN aggregate has the same type and scale as the aggregated
value. For INTEGER types, the scale is 0. When this property is set to a value other than the default 0, then
the scale is used if it is greater than the scale of the divisor or aggregated value. This property does not affect
DOUBLE values. Values between 0 - 10 can be used for this property.

SET DATABASE SQL AVG SCALE <numeric value>

Table 14.28. Support for NaN values

Name Default Description

sql.double_nan true behaviour of expressions returning DOUBLE NaN

This property, when set false, causes division of DOUBLE values by Zero to return a Double.NaN value. By
default an exception is thrown.

SET DATABASE SQL DOUBLE NAN { TRUE | FALSE }

Table 14.29. Sort order of NULL values

Name Default Description

sql.nulls_first true ordering of NULL values

By default, nulls appear before not-null values when a result set is ordered without specifying NULLS FIRST or
NULLS LAST. This property, when set false, causes nulls to appear by default after not-null values in result sets
with ORDER BY

SET DATABASE SQL NULLS FIRST { TRUE | FALSE }

Table 14.30. Sort order of NULL values with DESC

Name Default Description

sql.nulls_order true ordering of NULL values when DESC is used

By default, when an ORDER BY clause that does not specify NULLS FIRST or NULLS LAST is used, nulls are
ordered according to the sql.nulls_first setting even when DESC is used after ORDER BY. This property,
when set false, causes nulls to appear in the opposite position when DESC is used.

SET DATABASE SQL NULLS ORDER { TRUE | FALSE }

Table 14.31. String Comparison with Padding

Name Default Description

sql.pad_space true ordering of strings with trailing spaces

By default, when two strings are compared, the shorter string is padded with spaces before comparison. When this
property is set false, no padding takes place before comparison. Without padding, the shorter string is never equal
to the longer one.

Before version 2.0, HSQLDB used NO PAD comparison. If you need the old behaviour, use this property when
opening an older database.

Properties

298

Name Default Description

SET DATABASE COLLATION <collation name> [NO PAD | PAD SPACE]

Table 14.32. Default Locale Language Collation

Name Default Description

sql.compare_in_locale false use the default locale language collation

When this property is set true, the language of the default locale of the JVM is used as the default collation. This is
applied to new databases only.

SET DATABASE COLLATION <collation name>

Table 14.33. Case-Insensitive Varchar columns

Name Default Description

sql.ignore_case false case-insensitive VARCHAR

When this property is set true, all VARCHAR declarations in CREATE TABLE and other statements are assigned
an Upper Case Comparison collation, SQL_TEXT_UCC. This is designed for compatibility with some databases
that use case-insensitive comparison. It is better to specify the collation selectively for specific columns that require
it.

SET DATABASE COLLATION SQL_TEXT_UCC

Table 14.34. Lowercase column identifiers in ResultSet

Name Default Description

sql.lowercase_ident false use lowercase for unquoted column names in
ResultSetMetaData

When this property is set true, the ResultSetMetaData will report the names of columns, their table and their
schema in lowercase instead of uppercase when the names where not created as quoted identifiers. This setting is
useful for limited compatibility with PostgreSQL and MySQL which have non-standard identifier cases.

SET DATABASE SQL LOWER CASE IDENTIFIER

Table 14.35. Storage of Live Java Objects

Name Default Description

sql.live_object false storage of Java Objects in OTHER columns with or
without serialization

By default when Java Objects are stored in a column of type OTHER, the objects are serialized. Setting this
property to true results in the Object to be stored without serialization. This option is available in mem: database
only.

SET DATABASE LIVE OBJECT

Table 14.36. Names of System Indexes Used for Constraints

Name Default Description

sql.sys_index_names true name of system generated indexes for constraints

Properties

299

Name Default Description

HSQLDB automatically creates a system index for each PRIMARY KEY, UNIQUE and FOREIGN KEY
constraint. If a constraint is not defined with a name, the system generates a name. By default, the names of these
indexes will be the same as the constraint names. This helps associating the index name with the user-defined
constraint name. When this property is false, the names of those indexes are generated the system as a string
beginning with SYS_.

The default value for this property was false before version 2.7.0.

SET DATABASE SQL SYS INDEX NAMES { TRUE | FALSE }

Table 14.37. DB2 Style Syntax

Name Default Description

sql.syntax_db2 false support for DB2 style syntax

This property, when set true, allows compatibility with some aspects of this dialect.

SET DATABASE SQL SYNTAX DB2 { TRUE | FALSE }

Table 14.38. MSSQL Style Syntax

Name Default Description

sql.syntax_mss false support for MS SQL Server style syntax

This property, when set true, switches the arguments of the CONVERT function and also allow compatibility with
some other aspects of this dialect.

SET DATABASE SQL SYNTAX MSS { TRUE | FALSE }

Table 14.39. MySQL Style Syntax

Name Default Description

sql.syntax_mys false support for MySQL style syntax

This property, when set true, enables support for TEXT and AUTO_INCREMENT types and also allow
compatibility with many other aspects of this dialect.

SET DATABASE SQL SYNTAX MYS { TRUE | FALSE }

Table 14.40. Oracle Style Syntax

Name Default Description

sql.syntax_ora false support for Oracle style syntax

This property, when set true, enables support for non-standard types. It also enables DUAL, ROWNUM,
NEXTVAL and CURRVAL syntax and and also allow compatibility with some other aspects of this dialect.

SET DATABASE SQL SYNTAX ORA { TRUE | FALSE }

Table 14.41. PostgreSQL Style Syntax

Name Default Description

sql.syntax_pgs false support for PostgreSQL style syntax

Properties

300

Name Default Description

This property, when set true, enables support for TEXT and SERIAL types. It also enables NEXTVAL,
CURRVAL and LASTVAL syntax and also allow compatibility with some other aspects of this dialect.

SET DATABASE SQL SYNTAX PGS { TRUE | FALSE }

Table 14.42. Maximum Iterations of Recursive Queries

Name Default Description

sql.max_recursive 256 maximum number of iterations of a recursive query

Recursive queries terminate if they are not completed when the maximum number of iterations is reached. This is
to avoid long-running queries that may never actually finish.

The default value is fine for most use-cases. You can change the default if you need to.

SET DATABASE SQL MAX RECURSIVE <count>

Database Operations Properties

Table 14.43. Default Table Type

Name Default Description

hsqldb.default_table_type memory type of table created with unqualified CREATE TABLE

The CREATE TABLE command results in a MEMORY table by default. Setting the value cached for this
property will result in a cached table by default. The qualified forms such as CREATE MEMORY TABLE or
CREATE CACHED TABLE are not affected at all by this property.

SET DATABASE DEFAULT TABLE TYPE { CACHED | MEMORY }

Table 14.44. Transaction Control Mode

Name Default Description

hsqldb.tx locks database transaction control mode

Indicates the transaction control mode for the database. The values, locks, mvlocks and mvcc are allowed.

SET DATABASE TRANSACTION CONTROL { LOCKS | MVLOCKS | MVCC }

Table 14.45. Default Isolation Level for Sessions

Name Default Description

hsqldb.tx_level read_commiteddatabase default transaction isolation level

Indicates the default transaction isolation level for each new session. The values, read_committed and
serializable are allowed. Individual sessions can change their isolation level.

SET DATABASE DEFAULT ISOLATION LEVEL { READ COMMITTED | SERIALIZABLE }

Table 14.46. Transaction Rollback in Deadlock

Name Default Description

hsqldb.tx_conflict_rollback true effect of deadlock or other conflicts on transaction

Properties

301

Name Default Description

When a transaction deadlock or other unresolvable conflict is about to happen, the current transaction is rolled
back and an exception is raised. When this property is set false, the transaction is not rolled back. Only the latest
action that would cause the conflict is undone and an error is returned. The property should not be changed unless
the application can quickly perform an alternative statement and complete the transaction. It is provided for
compatibility with other database engines which do not roll back the transaction upon deadlock.

SET DATABASE TRANSACTION ROLLBACK ON CONFLICT { TRUE | FALSE }

Table 14.47. Transaction Rollback on Interrupt

Name Default Description

hsqldb.tx_interrupt_rollback false effect of Thread interrupt on transaction

In an in-process database, when a thread in the user's application is executing an SQL statement and it is
interrupted, the interrupt is cleared by HyperSQL. You can set this property to true to force a rollback of the
transaction (only if the interrupt is detected). With this setting the interrupt is not cleared.

SET DATABASE TRANSACTION ROLLBACK ON INTERRUPT { TRUE | FALSE }

Table 14.48. Time Zone and Interval Types

Name Default Description

hsqldb.translate_tti_types true usage of type codes for advanced interval types

If the property is true, the INTERVAL types are represented in JDBC methods of ResultSetMetaData and
DatabaseMetaData as the VARCHAR type. The original type names are preserved.

JDBC does not have direct support for names and codes of INTERVAL types. From Java 8, getting and setting
INTERVAL values is possible via getObject() and setObject() methods of ResultSet and PreparedStatement.

SET DATABASE SQL TRANSLATE TTI TYPES { TRUE | FALSE }

Table 14.49. Temporary Result Rows in Memory

Name Default Description

hsqldb.result_max_memory_rows 0 storage of temporary results and tables in memory or on
disk

This property can be set to specify how many rows of each results or temporary table are stored in memory before
the table is written to disk. The default is zero and means data is always stored in memory. If this setting is used, it
should be set above 1000.

SET DATABASE DEFAULT RESULT MEMORY ROWS <numeric value>

Database File and Memory Properties

Table 14.50. Opening Database as Read Only

Name Default Description

readonly false readonly database - is used to open an existing file:
database

Properties

302

Name Default Description

This property is a special property that can be added manually to the .properties file, or included in the URL or
connection properties. When this property is true, the database becomes readonly. This can be used with an existing
database to open it for readonly operation.

this property cannot be set with an SQL statement - it can be used in the .properties file

Table 14.51. Opening Database Without Modifying the Files

Name Default Description

files_readonly false readonly files database - is used to open an existing file:
database

This property is used similarly to the hsqldb.readonly property. When this property is true, CACHED and TEXT
tables are readonly but memory tables are not. Any change to the data is not persisted to database files.

this property cannot be set with an SQL statement - it can be used in the .properties file

Table 14.52. Event Logging

Name Default Description

hsqldb.applog 0 application logging level - can also be used when opening
an existing file: database

The default level 0 indicates no logging. Level 1 results in minimal logging, including any failures. Level 2
indicates all events, including ordinary events. LEVEL 3 adds details of some of the normal operations. The events
are logged in a file ending with ".app.log".

SET DATABASE EVENT LOG LEVEL { 0 | 1 | 2 | 3}

Table 14.53. SQL Logging

Name Default Description

hsqldb.sqllog 0 sql logging level - can also be used when opening an
existing file: database

The default level 0 indicates no logging. Level 1 logs only commits and rollbacks. Level 2 logs all the SQL
statements executed, together with their parameter values. Long statements and parameter values are truncated.
Level 3 is similar to Level 2 but does not truncate long statements and values. The events are logged in a file
ending with ".sql.log". This property applies to existing file: databases as well as new databases.

SET DATABASE EVENT LOG SQL LEVEL { 0 | 1 | 2 | 3}

Table 14.54. Table Spaces for Cached Tables

Name Default Description

hsqldb.files_space false use of separate table spaces for each CACHED table

The default value is false, indicating table space management is not used. When the value is true at the time of
creation of a new database, the directory structures are created inside the .data file and table space support is
enabled

SET FILES SPACE { TRUE | FALSE }

Properties

303

Table 14.55. Huge database files and tables

Name Default Description

hsqldb.large_data false enable huge database files - can also be used to open an
existing file: database

By default, up to 2 billion rows can be stored in all disk-based CACHED tables. Setting this property to true
increases the limit to 256 billion rows. This property is used as a connection property.

this property cannot be set with an SQL statement - it can be used as a connection property for
 the connection that opens the database

Table 14.56. Use of NIO for Disk Table Storage

Name Default Description

hsqldb.nio_data_file true use of nio access methods for the .data file

Setting this property to false will avoid the use of nio access methods, resulting in somewhat reduced speed. If
the data file is larger than hsqldb.nio_max_size (default 256MB) when it is first opened (or when its size
is increased), nio access methods are not used. Also, if the file gets larger than the amount of available computer
memory that needs to be allocated for nio access, non-nio access methods are used.

SET FILES NIO { TRUE | FALSE }

Table 14.57. Use of NIO for Disk Table Storage

Name Default Description

hsqldb.nio_max_size 256 nio buffer size limit

The maximum size of .data file in mega bytes that can use the nio access method. When the file gets larger than
this limit, non-nio access methods are used. Values 64, 128, 256, 512, 1024, and larger multiples of 512 can be
used. The default is 256MB.

SET FILES NIO SIZE <numeric value>

Table 14.58. Internal Backup of the .data File

Name Default Description

hsqldb.inc_backup true incremental backup of data file - NOW OBSOLETE

As the contents of the .data file are modified during database operation, the original contents are backed up
gradually. This allows fast checkpoint and shutdown.

With HSQLDB up to version 2.5 it was possible to set the property false in order to have the .data file backed up
entirely at the time of checkpoint and shutdown.

From version 2.5.1, this property has no effect and backup is always incremental.

SET FILES BACKUP INCREMENT { TRUE | FALSE }

Table 14.59. Unused Space Recovery

Name Default Description

hsqldb.cache_free_count 512 maximum number of unused space recovery - can also be
used when opening an existing file: database

Properties

304

Name Default Description

The default indicates 512 unused spaces are kept for later use. The value can range between 0 - 8096.

When rows are deleted, the space is recovered and kept for reuse for new rows. If too many rows are deleted, the
smaller recovered spaces are lost and the largest ones are retained for later use. Normally there is no need to set this
property.

When table space management is turned on (see hsqldb.files_space property) this property has little effect as
unused spaces are always recovered.

this property cannot be set with an SQL statement

Table 14.60. Rows Cached In Memory

Name Default Description

hsqldb.cache_rows 50000 maximum number of rows in memory cache

Indicates the maximum number of rows of cached tables that are held in memory.

The value can range between 100- 4 million. If the value is set via SET FILES CACHE ROWS then it becomes
effective after the next database SHUTDOWN.

SET FILES CACHE ROWS <numeric value>

Table 14.61. Size of Rows Cached in Memory

Name Default Description

hsqldb.cache_size 10000 memory cache size

Indicates the total size (in kilobytes) of rows in the memory cache used with cached tables. This size is calculated
as the binary size of the rows, for example an INTEGER is 4 bytes. The actual memory size used by the objects is
2 to 4 times this value. This depends on the types of objects in database rows, for example with binary objects the
factor is less than 2, with character strings, the factor is just over 2 and with date and timestamp objects the factor is
over 3.

The value can range between 100 KB - 4 GB. The default is 10,000, representing 10,000 kilobytes. If the value is
set via SET FILES then it becomes effective after the next database SHUTDOWN or CHECKPOINT.

SET FILES CACHE SIZE <numeric value>

Table 14.62. Size Scale of Disk Table Storage

Name Default Description

hsqldb.cache_file_scale 32 unit used for storage of rows in the .data file

The default value corresponds to a maximum size of 64 GB for the .data file. This can be increased to 64, 128,
256, 512, or 1024 resulting in up to 2 TB GB storage. Settings below 32 in older databases are preserved until a
SHUTDOWN COMPACT.

SET FILES SCALE <numeric value>

Table 14.63. Size Scale of LOB Storage

Name Default Description

hsqldb.lob_file_scale 32 unit used for storage of lobs in the .lobs file

Properties

305

Name Default Description

The default value represents units of 32KB. When the average size of individual lobs in the database is smaller, a
smaller unit can be used to reduce the overall size of the .lobs file. Values 1, 2, 4, 8, 16, 32 can be used.

SET FILES LOB SCALE <numeric value>

Table 14.64. Compression of BLOB and CLOB data

Name Default Description

hsqldb.lob_compressed false use of compression for storage of blobs and clobs

The default value is false, indicating no compression. When the value is true at the time of creation of a new
database, blobs and clobs are stored as compressed parts.

SET FILES LOB COMPRESSED { TRUE | FALSE }

Table 14.65. Use of Lock File

Name Default Description

hsqldb.lock_file true use of lock file - can also be used with an existing file:
database

By default, a lock file is created for each file database that is opened for read and write. This property can be
specified with the value false to prevent the lock file from being created. This usage is not recommended but
may be desirable when flash type storage is used. This property applies to existing file: databases as well as new
databases.

this property cannot be set with an SQL statement

Table 14.66. Logging Data Change Statements

Name Default Description

hsqldb.log_data true logging data change

This property can be set to false when database recovery in the event of an unexpected crash is not necessary. A
database that is used as a temporary cache is an example. Regardless of the value of this property, a checkpoint or
shutdown still writes the .script file and saves the .data file in full, therefore persisting all the changes.

SET FILES LOG { TRUE | FALSE }

Table 14.67. Automatic Checkpoint Frequency

Name Default Description

hsqldb.log_size 50 size of log when checkpoint is performed

The value is the size (in megabytes) that the .log file can reach before an automatic checkpoint occurs. A
checkpoint rewrites the .script file and clears the .log file.

SET FILES LOG SIZE <numeric value>

Table 14.68. Automatic Defrag at Checkpoint

Name Default Description

hsqldb.defrag_limit 0 percentage of unused space causing a defrag at checkpoint

Properties

306

Name Default Description

When a checkpoint is performed, the percentage of wasted space in the .data file is calculated. If the wasted
space is above the specified limit, a defrag operation is performed. The default is 0, which means no automatic
checkpoint. The numeric value must be between 0 and 100 and is interpreted as a percentage of the current size of
the .data file. Positive values less than 25 are converted to 25.

SET FILES DEFRAG <numeric value>

Table 14.69. Compression of the .script file

Name Default Description

hsqldb.script_format 0 compressed .script file

If the property is set with the value 3, the .script file is stored in compressed format. This is useful for large script
files. The .script is no longer readable when the hsqldb.script_format=3 has been used.

This property cannot be set with an SQL statement

Table 14.70. Logging Data Change Statements Frequency

Name Default Description

hsqldb.write_delay true write delay performing fsync of log file entries

If the property is true, the default WRITE DELAY property of the database is used, which is 500 milliseconds. If
the property is false, the WRITE DELAY is set to 0 seconds. The log is written to file regardless of this property.
The property controls the fsync that forces the written log to be persisted to disk. The SQL command for this
property allows more precise control over the property.

SET FILES WRITE DELAY {{ TRUE | FALSE } | <seconds value> | <milliseconds value> MILLIS

Table 14.71. Logging Data Change Statements Frequency

Name Default Description

hsqldb.write_delay_millis 500 write delay for performing fsync of log file entries

If the property is used, the WRITE DELAY property of the database is set the given value in milliseconds. The
property controls the fsync that forces the written log to be persisted to disk. The SQL command for this property
allows the same level of control over the property.

SET FILES WRITE DELAY {{ TRUE | FALSE } | <seconds value> | <milliseconds value> MILLIS

Table 14.72. Recovery Log Processing

Name Default Description

hsqldb.full_log_replay false recovery log processing

The .log file is processed during recovery after a forced shutdown. Out of memory conditions always abort the
startup. Any other exception stops the processing of the .log file and by default, continues the startup process.
If this property is true, the startup process is stopped if any exception occurs. Exceptions are usually caused by
incomplete lines of SQL statements near the end of the .log file, which were not fully synced to disk when an
abnormal shutdown occurred.

This property cannot be set with an SQL statement

Properties

307

Table 14.73. Default Properties for TEXT Tables

Name Default Description

textdb.* 0 default properties for new text tables

Properties that override the database engine defaults for newly created text tables. Settings in the text table SET
<tablename> SOURCE <source string> command override both the engine defaults and the database
properties defaults. Individual textdb.* properties are listed in the Text Tables chapter.

Table 14.74. Forcing Garbage Collection

Name Default Description

runtime.gc_interval 0 forced garbage collection - NOW OBSOLETE

No-op setting previously used to forces garbage collection each time a set number of result set row or cache row
objects are created. This setting has no effect in version 2.5 or later,

SET DATABASE GC <numeric value>

Crypt Properties

Table 14.75. Crypt Property For LOBs

Name Default Description

crypt_lobs true encryption of lobs

With encrypted databases, if this property is true, the contents of the .lobs file are also encrypted. HyperSQL
versions prior to 2.3.0 did not support encrypted lobs. Encrypted databases created with those versions must be
opened with crypt_lobs=false on the URL when they contain lobs.

this property cannot be set with an SQL statement

Table 14.76. Cipher Key for Encrypted Database

Name Default Description

crypt_key none encryption

The cipher key for an encrypted database.

this property cannot be set with an SQL statement

Table 14.77. Cipher Initialization Vector for Encrypted Database

Name Default Description

crypt_iv none encryption

The initialization vector for an encrypted database. Optional feature introduced in version 2.5.0.

this property cannot be set with an SQL statement

Table 14.78. Crypt Provider Encrypted Database

Name Default Description

crypt_provider none encryption

Properties

308

Name Default Description

The fully-qualified class name of the cryptography provider. This property is not used for the default security
provider.

this property cannot be set with an SQL statement

Table 14.79. Cipher Specification for Encrypted Database

Name Default Description

crypt_type none encryption

The cipher specification.

this property cannot be set with an SQL statement

System Properties
A few system properties are used by HyperSQL. These are set on the Java command line or by calling
System.setProperty() from the user's program. They are not valid as URL or connection properties.

Table 14.80. Logging Framework

Name Default Description

hsqldb.reconfig_logging true configuring the framework logging

Setting this system property false avoids reconfiguring the framework logging system such as Log4J or
java.util.Logging. If the property does not exist or is true, reconfiguration takes place.

Table 14.81. Text Tables

Name Default Description

textdb.allow_full_path false text table file locations

Setting this system property true allows text table sources and files to be opened on all available paths. It also
allows pure mem: databases to open such files. By default, only the database directory and its subdirectories are
allowed. See the Text Tables chapter.

Table 14.82. Java Functions

Name Default Description

hsqldb.method_class_names none allowed Java classes

This property needs to be set with the names (including wildcards) of Java classes that can be used for routines
based on Java static methods. See the SQL Invoked Routines chapter.

309

Chapter 15. HyperSQL Network Listeners
(Servers)
Server, WebServer, and Servlet

Fred Toussi, The HSQL Development Group
$Revision: 6428 $

Copyright 2002-2022 Fred Toussi. Permission is granted to distribute this document without any alteration
under the terms of the HSQLDB license. Additional permission is granted to the HSQL Development Group
to distribute this document with or without alterations under the terms of the HSQLDB license.
2022-10-20

Listeners
As described in the Running and Using HyperSQL chapter, network listeners (servers) provide connectivity to catalogs
from different JVM processes. The HyperSQL listeners support both ipv4 and ipv6 network addressing.

HyperSQL Server

This is the preferred way of running a database server and the fastest one. This mode uses the proprietary hsql:
communications protocol. The following example of the command for starting the server starts the server with one
(default) database with files named "mydb.*" and the public name (alias) of "xdb". Note the database property to set
the transaction mode to MVCC is appended to the database file path.

 java -cp ../lib/hsqldb.jar org.hsqldb.server.Server --database.0 file:mydb;hsqldb.tx=mvcc --
dbname.0 xdb

Alternatively, a server.properties file can be used for passing the arguments to the server. This file must be
located in the directory where the command is issued.

 java -cp ../lib/hsqldb.jar org.hsqldb.server.Server

Alternatively, you can specify the path of the server.properties file on the command line. In this case, the
properties file can have any name or extension, but it should be a valid properties file.

 java -cp ../lib/hsqldb.jar org.hsqldb.server.Server --props myserver.props

Use the --help argument to see the list of available arguments.

 java -cp ../lib/hsqldb.jar org.hsqldb.server.Server --help

The contents of the server.properties file is described in the next section.

HyperSQL HTTP Server

This method of access is used when the computer hosting the database server is restricted to the HTTP protocol. The
only reason for using this method of access is restrictions imposed by firewalls on the client or server machines and it
should not be used where there are no such restrictions. The HyperSQL HTTP Server is a special web server that allows
JDBC clients to connect via HTTP. The server can also act as a small general-purpose web server for static pages.

HyperSQL Network Listeners
(Servers)

310

To run an HTTP server, replace the main class for the server in the example command line above with the following:

 java -cp ../lib/hsqldb.jar org.hsqldb.server.WebServer

The contents of the server.properties file is described in the next section.

HyperSQL HTTP Servlet

This method of access also uses the HTTP protocol. It is used when a separate servlet engine (or application server)
such as Tomcat or Resin provides access to the database. The Servlet Mode cannot be started independently from the
servlet engine. The Servlet class, in the HSQLDB jar, should be installed on the application server to provide the
connection. The database is specified using an application server property. Refer to the source file src/org/
hsqldb/server/Servlet.java to see the details.

Both HTTP Server and Servlet modes can only be accessed using the JDBC driver at the client end. They do not
provide a web front end to the database. The Servlet mode can serve only a single database.

Please note that you do not normally use this mode if you are using the database engine in an application server. In
this situation, connections to a catalog are usually made in-process, or using an external HSQL Server instance.

Server and Web Server Properties
Properties files for running the servers are not created automatically. You should create your own files that contain
server.property=value pairs for each property. The server.properties or webserver.properties files
must be located in the directory where the command to run the org.hsqldb.server.Server class is issued.

In all properties files, values are case-sensitive. All values apart from names of files or pages are required in lowercase
(e.g. server.silent=FALSE will have no effect, but server.silent=false will work). Supported properties and their
default values (if any) are as follows:

Table 15.1. common server and webserver properties

Value Default Description

server.database.0 file:test the catalog type, path and file name of the first database
file to use

server.dbname.0 "" lowercase server alias for the first database file

server.database.n NO DEFAULT the catalog type, path and file name of the n'th database
file in use

server.dbname.n NO DEFAULT lowercase server alias for the n'th database file

server.silent true no extensive messages displayed on console

server.trace false JDBC trace messages displayed on console

server.address NO DEFAULT IP address of server

server.tls false Whether to encrypt network stream. If this is set to
true, then in normal situations you will also need to set
properties system.javax.net.ssl.keyStore and
system.javax.net.ssl.keyStorePassword,
as documented elsewhere. The value of server.tls
impacts the default value of server.port.

server.daemon false Whether the server is run as a daemon

HyperSQL Network Listeners
(Servers)

311

Value Default Description

server.remote_open false Allows opening a database path remotely when the first
connection is made

In HyperSQL version 2.0, each server can serve an unlimited number of databases simultaneously. The
server.database.0 property defines the filename / path whereas the server.dbname.0 defines the lowercase alias used
by clients to connect to that database. The digit 0 is incremented for the second database and so on. Values for
the server.database.n property can use the mem:, file: or res: prefixes and connection properties as discussed under
CONNECTIONS. For example,

 database.0=mem:temp;sql.enforce_strict_size=true;

Properties or default values specific to server.properties are:

Table 15.2. server properties

Value Default Description

server.port 9001 (normal)
or 554 (if TLS
encrypted)

TCP/IP port used for talking to clients. All databases are
served on the same port.

server.no_system_exit true no System.exit() call when the database is closed

Properties or default values specific to webserver.properties are:

Table 15.3. webserver properties

Value Default Description

server.port 80 (normal) or 443
(if TLS encrypted)

TCP/IP port used for talking to clients

server.default_page index.html the default web page for server

server.root ./ the location of served pages

.<extension> NO DEFAULT multiple entries such as .html=text/html define the
mime types of the static files served by the web server.
See the source for src/org/hsqldb/server/
WebServer.java for a list.

An example of the contents of a server.properties file is given below:

 server.database.0=file:/opt/db/accounts
 server.dbname.0=accounts

 server.database.1=file:/opt/db/mydb
 server.dbname.1=enrolments

 server.database.2=mem:adatabase
 server.dbname.2=quickdb

In the above example, the server.properties file indicates that the server provides access to 3 different
databases. Two of the databases are file based, while the third is all in memory. The aliases for the databases that the
users connect to are accounts, enrolments and quickdb.

All the above properties and their values can be specified on the command line to start the server by omitting the
server. prefix. If a property/value pair is specified on the command line, it overrides the property value specified
in the server.properties or webserver.properties file.

HyperSQL Network Listeners
(Servers)

312

Note

Upgrading: If you have existing custom properties files, change the values to the new naming convention.
Note the use of digits at the end of server.database.n and server.dbname.n properties.

Starting a Server from your Application
If you want to start the server from within your application, as opposed to the command line or batch files, you should
create an instance of Server or Web Server, then assign the properties and start the Server. An working example of
this can be found in the org.hsqldb.test.TestBase source. The example below sets the same properties
as in the server.properties file example.

 HsqlProperties p = new HsqlProperties();
 p.setProperty("server.database.0","file:/opt/db/accounts");
 p.setProperty("server.dbname.0","an_alias");
 // set up the rest of properties

 // alternative to the above is
 Server server = new Server();
 server.setProperties(p);
 server.setLogWriter(null); // can use custom writer
 server.setErrWriter(null); // can use custom writer
 server.start();

Shutting down a Server from your Application
To shut down the server, you can execute the SQL "SHUTDOWN" statement on the server databases.
When you start the server from your application and keep a reference to the Java Server object, you can
also shut it down programatically. Calling the shutdownCatalogs(int shutdownMode) method of
org.hsqldb.server.Server closes all the open databases, which results in server shtudown. The parameter
value is normally 1, which indicates normal shutdown. Other modes of shutdown, such as SHUTDOWN
IMMEDIATELY are also supported. See the javadoc for org.hsqldb.server.Server. See the example below:

 server.shutdownCatalogs(1);

The Server object has several alternative methods for setting databases and their public names. The server should be
shutdown using the shutdown() method.

Allowing a Connection to Open or Create a Database
If the server.remote_open property is true, the Server works differently from the normal mode. In this mode,
it is not necessary to have any databases listed as server.database.0 etc. in the Server startup properties. If there are
databases listed, they are opened as normal. The server does not shutdown when the last database is closed.

In this mode, a connection can be established to a database that is not open or does not exist. The server will open the
database or create it, then return a connection to the database.

The connection URL must include the path to the database, separated with a semicolon from the alias. In the example
below, the database path specified as file:C:/files/mydatabase is opened and the database alias xdb is
assigned to the database. After this, the next connection to the specified alias will connect to the same database. Any
database path on the URL is ignored if the alias is serving a database.

The database path can point to a file: or mem: database.

If you use database properties on the URL, these properties are used when the new database is created. If no database
properties are used on the URL, you can also specify the path with filepath=<path>. Examples below:

HyperSQL Network Listeners
(Servers)

313

Connection c = DriverManager.getConnection("jdbc:hsqldb:hsql://localhost/xdb;file:C:/files/
mydatabase", "SA", "");
Connection c = DriverManager.getConnection("jdbc:hsqldb:hsql://localhost/
xdb;mem:test;sql.enforce_types=true", "SA", "");
Connection c = DriverManager.getConnection("jdbc:hsqldb:hsql://localhost/xdb;filepath=file:C:/
files/mydatabase", "SA", "");

Specifying Database Properties at Server Start
Each database started by a Server has its own URL. When new databases are created by the server, the database
properties for each of the new database can be appended to the database URL. Examples below:

// example in server.propertie file
 server.database.0=file:/opt/db/accounts;hsqldb.default_table_type=cached;sql.enforce_names=true
 server.dbname.0=accounts

// example for setting the property programatically
 HsqlProperties p = new HsqlProperties();
 p.setProperty("server.database.0","file:/opt/db/
accounts;hsqldb.default_table_type=cached;sql.enforce_names=true");

The specified properties apply only to a new database. They have no effect on an existing database apart from a few
properties such as readonly listed in the Properties chapter.

TLS Encryption
Listener TLS Support (a. k. a. SSL)

Blaine Simpson, The HSQL Development Group
$Revision: 6428 $
2022-10-20

This section explains how to encrypt the stream between JDBC network clients and HyperSQL Listeners. If you are
running an in-process (non-Listener) setup, this chapter does not apply to you.

Requirements

Hsqldb TLS Support Requirements

• Java 4 and greater versions support JSSE.

• A JKS keystore containing a private key , in order to run a Listener.

• If you are running the listener side, then you'll need to run a HSQLDB Server or WebServer Listener instance. It
doesn't matter if the underlying database catalogs are new, and it doesn't matter if you are making a new Listener
configuration or encrypting an existing Listener configuration. (You can turn encryption on and off at will).

• You need a HSQLDB jar file that was built with JSSE present. If you obtained your HSQLDB distribution from us,
you are all set, because we build with Java 1.4 or later (which contains JSSE).

Encrypting your JDBC connection
At this time, only 1-way, server-cert encryption is tested.

Client-Side

Just use one of the following protocol prefixes.

HyperSQL Network Listeners
(Servers)

314

Hsqldb TLS URL Prefixes

• jdbc:hsqldb:hsqls://

• jdbc:hsqldb:https://

The latter will only work for clients running with Java 1.4 or later.

If the listener you wish to connect to is using a certificate approved by your default trust keystore, then there is nothing
else to do. If not, then you need to tell Java to "trust" the server cert. (It's a slight over-simplification to say that if
the server certificate was purchased, then you are all set; if somebody "signed their own" certificate by self-signing
or using a private ca certificate, then you need to set up trust).

First, you need to obtain the cert (only the "public" part of it). Since this cert is passed to all clients, you could obtain
it by writing a Java client that dumps it to file, or perhaps by using openssl s_client. Since in most cases, if you want
to trust a non-commercial cert, you probably have access to the server keystore, I'll show an example of how to get
what you need from the server-side JKS keystore.

You may already have an X509 cert for your server. If you have a server keystore, then you can generate a X509
cert like this.

Example 15.1. Exporting certificate from the server's keystore

 keytool -export -keystore server.store -alias existing_alias -file server.cer

In this example, server.cer is the X509 certificate that you need for the next step.

Now, you need to add this cert to one of the system trust keystores or to a keystore of your own. See the
Customizing Stores section in JSSERefGuide.html [http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/
JSSERefGuide.html#CustomizingStores] to see where your system trust keystores are. You can put private keystores
anywhere you want to. The following command will add the cert to an existing keystore, or create a new keystore if
client.store doesn't exist.

Example 15.2. Adding a certificate to the client keystore

 keytool -import -trustcacerts -keystore trust.store -alias new_alias -file server.cer

If you are making a new keystore, you probably want to start with a copy of your system default keystore which you
can find somewhere under your JAVA_HOME directory (typically jre/lib/security/cacerts for a JDK, but
I forget exactly where it is for a JRE).

Unless your OS can't stop other people from writing to your files, you probably do not want to set a password on
the trust keystore.

If you added the cert to a system trust store, then you are finished. Otherwise you will need to specify your
custom trust keystore to your client program. The generic way to set the trust keystore is to set the system property
javax.net.ssl.trustStore every time that you run your client program. For example

Example 15.3. Specifying your own trust store to a JDBC client

 java -Djavax.net.ssl.trustStore=/home/blaine/trust.store -jar /path/to/hsqldb.jar dest-urlid

This example runs the program SqlTool . SqlTool has built-in TLS support however, so, for SqlTool you can set
truststore on a per-urlid basis in the SqlTool configuration file.

http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html#CustomizingStores
http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html#CustomizingStores
http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html#CustomizingStores
http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html#CustomizingStores

HyperSQL Network Listeners
(Servers)

315

Note: The hostname in your database URL must match the Common Name of the server's certificate exactly.
That means that if a site certificate is admc.com, you cannot use jdbc:hsqldb:hsqls://localhost or
jdbc:hsqldb:hsqls://www.admc.com:1100 to connect to it.

If you want more details on anything, see JSSERefGuide.html on Sun's site [http://java.sun.com/javase/6/
docs/technotes/guides/security/jsse/JSSERefGuide.html], or in the subdirectory docs/guide/security/jsse
of your Java SE docs.

Server-Side (Listener-Side)

Get yourself a JKS keystore containing a private key . Then set properties server.tls,
system.javax.net.ssl.keyStore and system.javax.net.ssl.keyStorePassword in your
server.properties or webserver.properties file. Set server.tls to true,
system.javax.net.ssl.keyStore to the path of the private key JKS keystore, and
system.javax.net.ssl.keyStorePassword to the password (of both the keystore and the private key
record-- they must be the same). If you specify relative file path values, they will be resolved relative to the
${user.dir} when the JRE is started.

Caution

If you set any password in a .properties (or any other) file, you need to restrict access to the file. On a
good operating system, you can do this like so:

 chmod 600 path/to/server.properties

The values and behavior of the system.* settings above match the usage documented for
javax.net.ssl.keyStorePassword and javax.net.ssl.keyStore in the JSSE docs.

Note

Before version 2.0, HyperSQL depended on directly setting the corresponding JSSE properties. The new
idiom is more secure and easier to manage. If you have an old password in a UNIX init script config
file, you should remove it.

Making a Private-key Keystore

There are two main ways to do this. Either you can use a certificate signed by a certificate authority, or you can make
your own. One thing that you need to know in both cases is, the Common Name of the cert has to be the exact hostname
that JDBC clients will use in their database URL.

CA-Signed Cert

I'm not going to tell you how to get a CA-signed SSL certificate. That is well documented at many other places.

Assuming that you have a standard pem-style private key certificate, here's how you can use openssl [http://
www.openssl.org] and the program DERImport to get it into a JKS keystore.

Because I have spent a lot of time on this document already, I am just giving you an example.

Example 15.4. Getting a pem-style private key into a JKS keystore

 openssl pkcs8 -topk8 -outform DER -in Xpvk.pem -inform PEM -out Xpvk.pk8 -nocrypt

http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html
http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html
http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html
http://www.openssl.org
http://www.openssl.org
http://www.openssl.org

HyperSQL Network Listeners
(Servers)

316

 openssl x509 -in Xcert.pem -out Xcert.der -outform DER

 java DERImport new.keystore NEWALIAS Xpvk.pk8 Xcert.der

Important

Make sure to set the password of the key exactly the same as the password for the keystore!

You need the program DERImport.class of course. Do some internet searches to find DERImport.java or
DERImport.class and download it.

If DERImport has become difficult to obtain, I can write a program to do the same thing-- just let me know.

Non-CA-Signed Cert

Run man keytool or see the Creating a Keystore section of JSSERefGuide.html [http://java.sun.com/javase/6/
docs/technotes/guides/security/jsse/JSSERefGuide.html#CreateKeystore].

Automatic Server or WebServer startup on UNIX

If you are on UNIX and want to automatically start and stop a Server or WebServer running with encryption, set the
system.javax.net.ssl.keyStore and system.javax.net.ssl.keyStorePassword properties as
instructed above, and follow the instructions in the HyperSQL on UNIX chapter, paying close attention to the TLS-
related comments in the template config file.

If you are using a private server certificate, make sure to also set the trust store filepath for relevant urlids in your RC
file, as explained in the sample config file .

Network Access Control
(Server ACLs)

JDBC connections will always be denied if the supplied user and password are not found in the target catalog. But an
HyperSQL listener can also restrict access at the listener level, even protecting private catalogs which have insecure
(or default) passwords. If you have an in-process setup, this section of the Guide doesn't apply to you.

Many (in fact, most) distributed database applications don't have application clients connect directly to the database,
but instead encapsulate access in a controlling process. For example, a web app will usually access the data source
on behalf of users, with end-user web browsers never accessing the database directly. In these cases and others, the
security benefits of restricting listener access to specific source addresses is well worth the effort. ACLs work by
restricting access according to the source address of the incoming connection request. This is efficient because the
database engine never even gets the request until it is approved by the ACL filter code.

The sample file sample/acl.txt in your HyperSQL distribution explains how to write an ACL file.

$Id: acl.txt 536 2008-12-05 14:55:10Z unsaved $

Sample HyperSQL Network Listener ACL file.
Specify "allow" and "deny" rules
For address specifications, individual addresses, host names, and
network addresses with /bit suffix are allowed, but read the caveat about
host names below, under the sample "localhost" rule.

Blank lines ignored.
 # Lines with # as the first non-whitespace character are ignored.

allow 2001:db8::/32

http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html#CreateKeystore
http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html#CreateKeystore
http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html#CreateKeystore

HyperSQL Network Listeners
(Servers)

317

Allow this 32-bit ipv4 subnet

allow localhost
You should use numerical addresses in ACL files, unless you are certain that
the name will always be known to your network address resolution system
(assume that you will lose Internet connectivity at some time).
With a default name resolution setup on UNIX, you are safe to use names
defined in your /etc/hosts file.

deny 192.168.101.253
Deny a single IP address.
In our example, 192.168.101.0/24 is our local, organizational network.
192.168.101.253 is the IP address of our Intern's PC.
The Intern does not have permission to access our databases directly.

allow 192.168.101.0/24

Any ipv4 or ipv6 candidate address not matched above will be denied

You put your file wherever it is convenient for you, and specify that path with the property server.acl or
webserver.acl in your server.properties or webserver.properties file (depending on whether
your listener instance is a Server or WebServer). You can specify the ACL file path with an absolute or relative
path. If you use a relative path, it must be relative to the .properties file. It's often convenient to name the ACL
file acl.txt, in the same directory as your .properties file and specify the property value as just acl.txt.
This file name is intuitive, and things will continue to work as expected if you move or copy the entire directory.

Warning

If your Server or WebServer was started with a *.acl property, changes afterwards to the ACL
file will be picked up immediately by your listener instance. You are advised to use the procedure below
to prevent partial edits or mistakes from crippling your running server.

When you edit your ACL file, it is both more convenient and more secure to test it as explained here before activating
it. You could, of course, test an ACL file by editing it in-place, then trying to connect to your listener with JDBC
clients from various source addresses. Besides being mightily laborious and boring, with this method it is very easy to
accidentally open access to all source addresses or to deny access to all users until you fix incorrect ACL entries.

The suggested method of creating or changing ACLs is to work with an inactive file (for new ACL files, just don't
enable the *.acl property yet; for changing an existing file, just copy it to a temporary file and edit the temporary
file). Then use the ServerAcl class to test it.

Example 15.5. Validating and Testing an ACL file

 java -cp path/to/hsqldb.jar org.hsqldb.server.ServerAcl path/to/acl.txt

If the specified ACL file fails validation, you will be given details about the problem. Otherwise, the validated rules
will be displayed (including the implicit, default deny rules). You then type in host names and addresses, one-per-line.
Each name or address is tested as if it were a HyperSQL network client address, using the same exact method that the
HyperSQL listener will use. (HyperSQL listeners use this same ServerAcl class to test incoming source addresses).
ServerAcl will report the rule which matches and whether access is denied or allowed to that address.

If you have edited a copy of an existing ACL file (as suggested above), then overwrite your live ACL file with your
new, validated ACL file. I.e., copy your temp file over top of your live ACL file.

ServerAcl can be run in the same exact way described above, to troubleshoot runtime access issues. If you use an
ACL file and a user or application can't get a connection to the database, you can run ServerAcl to quickly and
definitively find if the client is being prohibited by an ACL rule.

318

Chapter 16. HyperSQL on UNIX
How to quickly get a HyperSQL Listener up and running on UNIX,
including Mac OS X

Blaine Simpson, The HSQL Development Group
$Revision: 6621 $
2022-10-20

Purpose
This chapter explains how to quickly install, run, and use a HyperSQL Listener (aka Server) on UNIX.

Note that, unlike a traditional database server, there are many use cases where it makes sense to run HyperSQL without
any listener. This type of setup is called in-process, and is not covered here, since there is no UNIX-specific setup
in that case.

I intend to cover what I think is the most common UNIX setup: To run a multi-user, externally-accessible catalog with
permanent data persistence. (By the latter I mean that data is stored to disk so that the catalog data will persist across
process shutdowns and startups). I also cover how to run the Listener as a system daemon.

When I give sample shell commands below, I use commands which will work in Bourne-compatible shells, including
Bash and Korn. Users who insist on using the inferior C-shells will need to convert.

Installation
Go to http://sourceforge.net/projects/hsqldb and click on the "files" link. You want the current version. I can't be
more specific because SourceForge/Geeknet are likely to continue changing their interface. See if there's a distribution
for the current HSQLDB version in the format that you want.

If you want a binary package and we either don't provide it, or you prefer somebody else's build, you should still find out
the current version of HyperSQL available at SourceForge. It's very likely that you can find a binary package for your
UNIX variant with your OS distributor, http://www.jpackage.org/ , http://sunfreeware.com/ , etc. Nowadays, most
UNIXes have software package management systems which check Internet repositories. Just search the repositories for
"hsqldb" and "hypersql". The challenge is to find an up-to-date package. You will get better features and support if you
work with the current stable release of HyperSQL. (In particular, HyperSQL version 2.0.0 added tons of new features).
Pay attention to what JVM versions your binary package supports. Our builds (version 2.0 and later) document the
Java version it was built with in the file doc/index.html, but you can't depend on this if somebody else assembled
your distribution. Java jar files are generally compatible with the same or greater major versions. For example,if your
hsqldb.jar was built with Java 6, then it is compatible with Java versions 6 and greater.

Note

It could very well happen that some of the file formats which I discuss below are not in fact offered. If
so, then we have not gotten around to building them.

Binary installation depends on the package format that you downloaded.

Installing from a .pkg.Z file This package is only for use by a Solaris super-user. It's a System V package.
Download then uncompress the package with uncompress or gunzip

 uncompress filename.pkg.Z

http://sourceforge.net/projects/hsqldb
http://www.jpackage.org/
http://sunfreeware.com/

HyperSQL on UNIX

319

You can read about the package by running

 pkginfo -l -d filename.pkg

Run pkgadd as root to install.

 pkgadd -d filename.pkg

Installing from a BSD Port or
Package

You're on your own. I find everything much easier when I install software to
BSD without their package management systems.

Installing from a .rpm file Just skip this section if you know how to install an RPM. If you found the RPM
using a software management system, then just have it install it. The remainder
of item explains a generic command-line method which should work with any
Linux variant. After you download the rpm, you can read about it by running

 rpm -qip /path/to/file.rpm

Rpms can be installed or upgraded by running

 rpm -Uvh /path/to/file.rpm

as root. Suse users may want to keep Yast aware of installed packages by
running rpm through Yast: yast2 -i /path/to/file.rpm.

Installing from a .zip file Extract the zip file in an ancestor directory of the new HSQLDB home. You
don't need to create the HSQLDB_HOME directory because the extraction will
create a version-labelled directory, and the subdirectory "hsqldb". This "hsqldb"
directory is your HSQLDB_HOME, and you can move it to wherever you wish.
If you will be upgrading or maintaining multiple versions of HyperSQL, you
will want to retain the version number in the directory tree somehow.

 cd ancestor/of/new/hsqldb/home
 unzip /path/to/file.zip

All the files in the zip archive will be extracted to underneath a new subdirectory
named like hsqldb-2.7.1/hsqldb.

Take a look at the files you installed. (Under hsqldb for zip file installations. Otherwise, use the utilities for
your packaging system). The most important file of the HyperSQL system is hsqldb.jar, which resides in the
subdirectory lib. Depending on who built your distribution, your file name may have a version label in it, like
hsqldb-2.7.1.jar.

Important

For the purposes of this chapter, I define HSQLDB_HOME to be the parent directory of the lib directory that
contains hsqldb.jar. E.g., if your path to hsqldb.jar is /a/b/hsqldb/lib/hsqldb.jar,
then your HSQLDB_HOME is /a/b/hsqldb.

Furthermore, unless I state otherwise, all local file paths that I give are relative to the HSQLDB_HOME.

If the description of your distribution says that the hsqldb.jar file will work for your Java version, then you are
finished with installation. Otherwise you need to build a new hsqldb.jar file.

If you followed the instructions above and you still don't know what Java version your hsqldb.jar supports, then
try reading documentation files like readme.txt, README.TXT, INSTALL.txt etc. (As I said above, our newer

HyperSQL on UNIX

320

distributions always document the Java version for the build, in the file doc/index.html). If that still doesn't help,
then you can just try your hsqldb.jar and see if it works, or build your own.

To use the supplied hsqldb.jar, just skip to the next section of this document . Otherwise build a new
hsqldb.jar.

Procedure 16.1. Building hsqldb.jar

1. If you don't already have Ant, download the latest stable binary version from http://ant.apache.org . cd to where
you want Ant to live, and extract from the archive with

 unzip /path/to/file.zip

or

 tar -xzf /path/to/file.tar.gz

or

 bunzip2 -c /path/to/file.tar.bz2 | tar -xzf -

Everything will be installed into a new subdirectory named apache-ant- + version. You can rename the
directory after the extraction if you wish.

2. Set the environmental variable JAVA_HOME to the base directory of your Java JRE or SDK, like

 export JAVA_HOME; JAVA_HOME=/usr/java/j2sdk1.4.0

The location is entirely dependent upon your variety of UNIX. Sun's rpm distributions of Java normally install
to /usr/java/something. Sun's System V package distributions of Java (including those that come with
Solaris) normally install to /usr/something, with a sym-link from /usr/java to the default version (so
for Solaris you will usually set JAVA_HOME to /usr/java).

3. Remove the existing file HSQLDB_HOME /lib/hsqldb.jar.

4. cd to HSQLDB_HOME /build. Make sure that the bin directory under your Ant home is in your search path.
Run the following command.

 ant hsqldb

This will build a new HSQLDB_HOME /lib/hsqldb.jar.

See the Building HSQLDB Jars appendix if you want to build anything other than hsqldb.jar with all default
settings.

Setting up a HyperSQL Persistent Database Catalog
and a HyperSQL Network Listener
If you installed from an OS-specific package, you may already have a catalog and listener pre-configured. See if
your package includes a file named server.properties (make use of your packaging utilities). If you do, then I
suggest that you still read this section while you poke around, in order to understand your setup.

1. Select a UNIX user to run the database process (JVM) as. If this database is for the use of multiple users, or is a
production system (or to emulate a production system), you should dedicate a UNIX user for this purpose. In my
examples, I use the user name hsqldb. In this chapter, I refer to this user as the HSQLDB_OWNER, since that
user will own the database catalog files and the JVM processes.

http://ant.apache.org

HyperSQL on UNIX

321

If the account doesn't exist, then create it. On all system-5 UNIXes and most hybrids (including Linux), you can
run (as root) something like

 useradd -c 'HSQLDB Database Owner' -s /bin/bash -m hsqldb

(BSD-variant users can use a similar pw useradd hsqldb... command).

2. Become the HSQLDB_OWNER. Copy the sample file sample/server.properties to
the HSQLDB_OWNER's home directory and rename it to server.properties. (As a final reminder,
"sampleserver.properties" is a relative path, so it is understood to be relative to your HSQLDB_HOME).

Hsqldb Server cfg file.
See the HyperSQL Network Listeners chapter of the HyperSQL User Guide.

Each server.database.X setting defines a database "catalog".
I.e., an independent set of data.
Each server.database.X setting corresponds exactly to the jdbc:hsqldb:*
JDBC URL you would use if you wanted to get a direct (In-Process)
Connection to the catalog instead of "serving" it.

server.database.0=file:db0/db0
I suggest that, for every file: catalog you define, you add the
connection property "ifexists=true" after the database instance
is created (which happens simply by starting the Server one time).
Just append ";ifexists=true" to the file: URL, like so:
server.database.0=file:db0/db0;ifexists=true

server.dbname.0 defaults to "" (i.e. server.dbname.n for n==0), but
the catalog definition n will be entirely ignored for n > 0 if you do not
set server.dbname.n. I.e. dbname setting is required for n > 0, though it
may be set to blank (e.g. "server.dbname.3=")

Since the value of the first database (server.database.0) begins with file:, the catalog will be persisted to a set
of files in the specified directory with names beginning with the specified name. Set the path to whatever you
want (relative paths will be relative to the directory containing the properties file). You can read about how to
specify other catalogs of various types, and how to make settings for the listen port and many other things in
other chapters of this guide.

3. Set and export the environmental variable CLASSPATH to the value of HSQLDB_HOME (as described above)
plus "/lib/hsqldb.jar", like

 export CLASSPATH; CLASSPATH=/path/to/hsqldb/lib/hsqldb.jar

In HSQLDB_OWNER's home directory, run

 nohup java org.hsqldb.server.Server &

This will start the Listener process in the background, and will create your new database catalog "db0". Continue
on when you see the message containing HSQLDB server... is online. nohup just makes sure that the
command will not quit when you exit the current shell (omit it if that's what you want to do).

Accessing your Database
We're going to use SqlTool to access the database, so you will need the file sqltool.jar in addition to
hsqldb.jar. If sqltool.jar isn't already sitting there beside hsqldb.jar (they both come pre-built), build
it exactly as you would build hsqldb.jar, except use ant target sqltool. If your distribution came with a sqltool
jar file with a version label, like sqltool-1.2.3.4.jar, that's fine-- use that file whenever I say sqltool.jar
below.

HyperSQL on UNIX

322

Copy the file sample/sqltool.rc to the HSQLDB_OWNER's home directory. Use chmod to make the file
readable and writable only to HSQLDB_OWNER.

$Id: sqltool.rc 6381 2021-11-18 21:45:56Z unsaved $

This is a sample RC configuration file used by SqlTool, DatabaseManager,
and any other program that uses the org.hsqldb.lib.RCData class.
See the documentation for SqlTool for various ways to use this file.
This is not a Java Properties file. It uses a custom format with stanzas,
similar to .netrc files.

If you have the least concerns about security, then secure access to
your RC file.

You can run SqlTool right now by copying this file to your home directory
and running
java -jar /path/to/sqltool.jar mem
This will access the first urlid definition below in order to use a
personal Memory-Only database.
"url" values may, of course, contain JDBC connection properties, delimited
with semicolons.
As of revision 3347 of SqlFile, you can also connect to datasources defined
here from within an SqlTool session/file with the command "\j urlid".

You can use Java system property values in this file like this: ${user.home}

Windows users are advised to use forward slashes instead of back-slashes,
and to avoid paths containing spaces or other funny characters. (This
recommendation applies to any Java app, not just SqlTool).

It is a runtime error to do a urlid lookup using RCData class and to not
match any stanza (via urlid pattern) in this file.

Three features added recently. All are downward-compatible.
1. urlid field values in this file are now comma-separated (with optional
whitespace before or after the commas) regular expressions.
2. Each individual urlid token value (per previous bullet) is a now a regular
expression pattern that urlid lookups are compared to. N.b. patterns must
match the entire lookup string, not just match "within" it. E.g. pattern
of . would match lookup candidate "A" but not "AB". .+ will always match.
3. Though it is still an error to define the same exact urlid value more
than once in this file, it is allowed (and useful) to have a url lookup
match more than one urlid pattern and stanza. Assignments are applied
sequentially, so you should generally add default settings with more
liberal patterns, and override settings later in the file with more
specific (or exact) patterns.

Since service discovery works great in all JREs for many years now, I
have removed all 'driver' specifications here. JRE discover will
automatically resolve the driver class based on the JDBC URL format.
Most people use default ports, so I have removed port specification from
examples except for Microsoft's Sql Server driver where you can't depend
on a default port.
In all cases, to specify a non-default port, insert colon and port number
after the hostname or ip address in the JDBC URL, like
jdbc:hsqldb:hsql://localhost:9977 or
jdbc:sqlserver://hostname.admc.com:1433;databaseName=dbname

Amazon Aurora instances are access from JDBC exactly the same as the
non-Aurora RDS counterpart.

For using any database engine other than HyperSQL, you must add the
JDBC jar file and the SqlTool jar to your CLASSPATH then run a command like:
java org.hsqldb.util.SqlTool...
I.e., the "-jar" switch doesn't support modified classpath.
(See SqlTool manual for how to do same thing using Java modules.)
To oversimplify for non-developers, the two most common methods to set

HyperSQL on UNIX

323

CLASSPATH for an executable tool like SqlTool are to either use the java
"-cp" switch or set environmental variable CLASSPATH.
Windows users can use graphical UI or CLI "set". Unix shell users must
"export" in addition to assigning.

All JDBC jar files used in these examples are available from Maven
repositories. You can also get them from vendor web sites or with product
bundles (especially database distributions).
Most databases provide multiple variants. Most people will want a type 4
driver supporting your connection mechanism (most commonly TCP/IP service,
but also database file access and others) and your client JRE version.
By convention the variants are distinguished in segments of the jar file
name before the final ".jar" .

Global default. .+ matches all lookups:
urlid .+
username SA
password

A personal Memory-Only (non-persistent) database.
Inherits username and password from default setting above.
urlid mem
url jdbc:hsqldb:mem:memdbid

A personal, local, persistent database.
Inherits username and password from default setting above.
urlid personal
url jdbc:hsqldb:file:${user.home}/db/personal;shutdown=true;ifexist=true
transiso TRANSACTION_READ_COMMITTED
When connecting directly to a file database like this, you should
use the shutdown connection property like this to shut down the DB
properly when you exit the JVM.

This is for a hsqldb Server running with default settings on your local
computer (and for which you have not changed the password for "SA").
Inherits username and password from default setting above.
Default port 9001
urlid localhost-sa
url jdbc:hsqldb:hsql://localhost

Template for a urlid for an Oracle database.
Driver jar files from this century have format like "ojbc*.jar".
Default port 1521
urlid localhost-sa
Avoid older drivers because they have quirks.
You could use the thick driver instead of the thin, but I know of no reason
why any Java app should.

#urlid cardiff2
Can identify target database with either SID or global service name.
#url jdbc:oracle:thin:@//centos.admc.com/tstsid.admc
#username blaine
#password asecret

Template for a TLS-encrypted HSQLDB Server.
Remember that the hostname in hsqls (and https) JDBC URLs must match the
CN of the server certificate (the port and instance alias that follows
are not part of the certificate at all).
You only need to set "truststore" if the server cert is not approved by
your system default truststore (which a commercial certificate probably
would be).
Port defaults to 554.

HyperSQL on UNIX

324

#urlid tls
#url jdbc:hsqldb:hsqls://db.admc.com:9001/lm2
#username BLAINE
#password asecret
#truststore ${user.home}/ca/db/db-trust.store

Template for a Postgresql database
Driver jar files are of format like "postgresql-*.jar"
Port defaults to 5432.
#urlid blainedb
#url jdbc:postgresql://idun.africawork.org/blainedb
#username blaine
#password asecret

Amazon RedShift (a fork of Postgresql)
Driver jar files are of format like "redshift-jdbc*.jar"
Port defaults to 5439.
#urlid redhshift
#url jdbc:redshift://clustername.hex.us-east-1.redshift.amazonaws.com/dev
#username awsuser
#password asecret

Template for a MySQL database. MySQL has poor JDBC support.
The latest driver jar files are of format like "mysql-jdbc*.jar", but not
long ago they were like "mysql-connector-java*.jar".
Port defaults to 3306
#urlid mysql-testdb
#url jdbc:mysql://hostname/dbname
#username root
#password asecret
Alternatively, you can access MySQL using jdbc:mariadb URLs and driver.

Note that "databases" in SQL Server and Sybase are traditionally used for
the same purpose as "schemas" with more SQL-compliant databases.

Template for a Microsoft SQL Server database using Microsoft's Driver
Seems that some versions default to port 1433 and others to 1434.
MSDN implies instances are port-specific, so can specify port or instname.
#urlid msprojsvr
Driver jar files are of format like "mssql-jdbc-*.jar".
Don't use older MS JDBC drivers (like SQL Server 2000 vintage) because they
are pitifully incompetent, handling transactions incorrectly.
I recommend that you do not use Microsoft's nonstandard format that
includes backslashes.
#url jdbc:sqlserver://hostname;instanceName=instname;databaseName=dbname
with port:
#url jdbc:sqlserver://hostname:1433;instanceName=instname;databaseName=dbname
#username myuser
#password asecret

Template for Microsoft SQL Server database using the JTDS Driver
Looks like this project is no longer maintained, so you may be better off
using the Microsoft driver above.
http://jtds.sourceforge.net Jar file has name like "jtds-1.3.1.jar".
Port defaults to 1433.
MSDN implies instances are port-specific, so can specify port or instname.
#urlid nlyte
#username myuser
#password asecret
#url jdbc:jtds:sqlserver://myhost/nlyte;instance=MSSQLSERVER
Where database is 'nlyte' and instance is 'MSSQLSERVER'.
N.b. this is diff. from MS tools and JDBC driver where (depending on which
document you read), instance or database X are specified like HOSTNAME\X.

Template for a Sybase database
#urlid sybase

HyperSQL on UNIX

325

#url jdbc:sybase:Tds:hostname:4100/dbname
#username blaine
#password asecret
This is for the jConnect driver (requires jconn3.jar).

Derby / Java DB.
Please see the Derby JDBC docs, because they have changed the organization
of their driver jar files in recent years. Combining that with the different
database types supported and jar file classpath chaining, and it's not
feasible to document it adequately here.
I'll just give one example using network service, which works with 10.15.2.0.
Put files derbytools*.jar, derbyclient*.jar, derbyshared*.jar into a
directory and include the path to the derbytools.jar in your classpath.
Port defaults to 1527.
#url jdbc:derby://server:<port>/databaseName
#username ${user.name}
#password any_noauthbydefault
If you get the right classes into classpath, local file URLs are like:
#url jdbc:derby:path/to/derby/directory
You can use \= to commit, since the Derby team decided (why???)
not to implement the SQL standard statement "commit"!!
Note that SqlTool can not shut down an embedded Derby database properly,
since that requires an additional SQL connection just for that purpose.
However, I've never lost data by shutting it down improperly.
Other than not supporting this quirk of Derby, SqlTool is miles ahead of
Derby's ij.

Maria DB
With current versions, the MySQL driver does not work to access a Maria
database (though the inverse works).
Driver jar files are of format like "mariadb-java-client*.jar"
Port defaults to 3306
#urlid maria
#url jdbc:mariadb://hostname/db2
#username blaine
#password asecret

We will be using the "localhost-sa" sample urlid definition from the config file. The JDBC URL for this urlid is
jdbc:hsqldb:hsql://localhost. That is the URL for the default catalog of a HyperSQL Listener running
on the default port of the local host. You can read about URLs to connect to other catalogs with and without listeners
in other chapters of this guide.

Run SqlTool.

 java -jar path/to/sqltool.jar localhost-sa

If you get a prompt, then all is well. If security is of any concern to you at all, then you should change the privileged
password in the database. Use the command SET PASSWORD command to change SA's password.

 SET PASSWORD 'newpassword';

Set a strong password!

Note

If, like most UNIX System Administrators, you often need to make up strong passwords, I highly suggest
the great little program pwgen [https://sourceforge.net/projects/pwgen/] . You
can probably get it where you get your other OS packages. The command pwgen -1 is usually all
you need.

Note that with SQL-conformant databases like HyperSQL 2.0, user names and passwords are case sensitive. If you don't
quote the name, it will be interpreted as upper-case, like any named SQL object. (Only for backwards compatibility,
we do make an exception for the special user name SA, but you should always use upper-case "SA" nevertheless).

https://sourceforge.net/projects/pwgen/
https://sourceforge.net/projects/pwgen/

HyperSQL on UNIX

326

When you're finished playing, exit with the command \q.

If you changed the SA password, then you need to update the password in the sqltool.rc file accordingly.

You can, of course, also access the database with any JDBC client program. You will need to modify your classpath
to include hsqldb.jar as well as your client class(es). You can also use the other HSQLDB client programs, such
as org.hsqldb.util.DatabasManagerSwing, a graphical client with a similar purpose to SqlTool.

You can use any normal UNIX account to run the JDBC clients, including SqlTool, as long as the account has
read access to the sqltool.jar file and to an sqltool.rc file. See the Utilities Guide about where to put
sqltool.rc, how to execute sql files, and other SqlTool features.

Create additional Accounts
Connect to the database as SA (or any other Administrative user) and run CREATE USER to create new accounts
for your catalog. HSQLDB accounts are database-catalog-specific, not Listener-specific.

In SQL-compliant databases, all database objects are created in a schema. If you don't specify a schema, then the
new object will be created in the default schema. To create a database object, your account (the account that you
connected with) must have the role DBA, or your account must have authorization for the target schema (see the
CREATE SCHEMA command about this last). When you first create a HyperSQL catalog, it has only one database
user-- SA, a DBA account, with an empty string password. You should set a password (as described above). You can
create as many additional users as you wish. To make a user a DBA, you can use the "ADMIN" option to the CREATE
USER command, command, or GRANT the DBA Role to the account after creating it.

Once an object is created, the object creator and users with the DBA role will have all privileges to work with that object.
Other users will have only the rights which the pseudo-user PUBLIC has. To give specific users more permissions,
even rights to read objects, you can GRANT permissions for specific objects, grant Roles (which encompass a set of
permissions), or grant the DBA Role itself.

Since only people with a database account may do anything at all with the database, it is often useful to permit
other database users to view the data in your tables. To optimize performance, reduce contention, and minimize
administration, it is often best to grant SELECT to PUBLIC on table-like objects that need to be accessed by multiple
database users, with the significant exception of any data which you want to keep secret. (Similarly with EXECUTE
priv for routines and USAGE priv for other object types). Note that this is not at all equivalent to giving the world
or the Internet read access to your tables-- you are giving read access to people that have been given accounts for the
target database catalog.

Shutdown
Do a clean database shutdown when you are finished with the database catalog. You need to connect up as SA or some
other Admin user, of course. With SqlTool, you can run

 java -jar path/to/sqltool.jar --sql 'shutdown;' localhost-sa

You don't have to worry about stopping the Listener because it shuts down automatically when all served database
catalogs are shut down.

Running Hsqldb as a System Daemon
You can, of course, run HSQLDB through inittab on System V UNIXes, but usually an init script is more convenient
and manageable. This section explains how to set up and use our UNIX init script. Our init script is only for use by
root. (That is not to say that the Listener will run as root-- it usually should not).

The main purpose of the init script is to start up a Listener for the database catalogs specified in your
server.properties file; and to gracefully shut down these same catalogs. For each catalog defined by
a server.database.X setting in your .properties file, you must define an administrative "urlid" in your

HyperSQL on UNIX

327

sqltool.rc (these are used to access the catalogs for validation and shutdown purposes). Finally, you list the urlid
names in your init script config file. If, due to firewall issues, you want to run a WebServer instead of a Server, then
make sure you have a healthy WebServer with a webserver.properties set up, adjust your URLs in sqltool.rc, and
set TARGET_CLASS in the config file.

By following the commented examples in the config file, you can start up any number of Server and/or WebServer
listener instances with or without TLS encryption, and each listener instance can serve any number of HyperSQL
catalogs (independent data sets), all with optimal efficiency from a single JVM process. There are instructions in
the init script itself about how to run multiple, independently-configured JVM processes. Most UNIX installations,
however, will run a single JVM with a single Listener instance which serves multiple catalogs, for easier management
and more efficient resource usage.

After you have the init script set up, root can use it anytime to start or stop HSQLDB. (I.e., not just at system bootup
or shutdown).

Portability of hsqldb init script
The primary design criterion of the init script is portability. It does not print pretty color startup/shutdown messages as
is common in late-model Linuxes and HPUX; and it does not keep subsystem state files or use the startup/shutdown
functions supplied by many UNIXes, because these features are all non-portable.

Offsetting these limitations, this one script does its intended job great on the UNIX varieties I have tested, and can
easily be modified to accommodate other UNIXes. While you don't have tight integration with OS-specific daemon
administration guis, etc., you do have a well-tested and well-behaved script that gives good, utilitarian feedback.

Init script Setup Procedure
The strategy taken here is to get the init script to run your single Server or WebServer first (as specified by
TARGET_CLASS). After that's working, you can customize the JVM that is run by running additional Listener
instances in it, running your own application in it (embedding), or even overriding HSQLDB behavior with your own
overriding classes.

1. Copy the init script sample/hsqldb.init to hsqldb in the directory where init scripts live on your
variety of UNIX. The most common locations are /etc/init.d or /etc/rc.d/init.d on System V style
UNIXes, /usr/local/etc/rc.d on BSD style UNIXes, and /Library/StartupItems/hsqldb on
OS X (you'll need to create the directory for the last).

2. View your server.properties file. Make a note of every catalog define by a server.database.X
setting. A couple steps down, you will need to set up administrative access for each of these catalogs. If you are
using our sample server.properties file, you will just need to set up access for the catalog specified
with file:db0/dbo.

Note

Pre-2.0 versions of the hsqldb init script required use of .properties settings of the
formserver.urlid.X. These settings are obsolete and should be removed.

3. Either copy HSQLDB_OWNER's sqltool.rc file into root's home directory, or set the value of AUTH_FILE
to the absolute path of HSQLDB_OWNER's sqltool.rc file. This file is read directly by root, even if you run
hsqldb as non-root (by setting HSQLDB_OWNER in the config file). If you copy the file, make sure to use chmod
to restrict permissions on the new copy. The init script will abort with an appropriate exhortation if you have the
permissions set incorrectly.

You need to set up a urlid stanza in your sqltool.rc file for network access (i.e. JDBC URL with hsql:, hsqls:,
http:, or https:) for each catalog in your server.properties file. For our example, you need to define a

HyperSQL on UNIX

328

stanza for the file:db0/db0 catalog. You must supply for this catalog, a hsql: JDBC URL, an administrative
user name, and the password.

Example 16.1. example sqltool.rc stanza

 urlid localhostdb1
 url jdbc:hsqldb:hsql://localhost
 username SA
 password secret

4. Look at the comment towards the top of the init script which lists recommended locations for the configuration
file for various UNIX platforms. Copy the sample config file sample/hsqldb.conf to one of the listed
locations (your choice). Edit the config file according to the instructions in it. For our example, you will set the
value of URLIDS to localhostdb1, since that is the urlid name that we used in the sqltool.rc file.

$Id: hsqldb.conf 6310 2021-02-28 15:25:00Z unsaved $

Sample configuration file for HyperSQL Server Listener.
See the "HyperSQL on UNIX" chapter of the HyperSQL User Guide.

N.b.!!!! You must place this in the right location for your type of UNIX.
See the init script "hsqldb" to see where this must be placed and
what it should be renamed to.

This file is "sourced" by a Bourne shell, so use Bourne shell syntax.

This file WILL NOT WORK until you set (at least) the non-commented
variables to the appropriate values for your system.
Life will be easier if you avoid all filepaths with spaces or any other
funny characters. Don't ask for support if you ignore this advice.

The URLIDS setting below is new and REQUIRED. This setting replaces the
server.urlid.X settings which used to be needed in your Server's
properties file.

-- Blaine (blaine dot simpson at admc dot com)

JAVA_EXECUTABLE=/usr/bin/java

Unless you copied the jar files from another system, this typically
resides at $HSQLDB_HOME/lib/sqltool.jar, where $HSQLDB_HOME is your HSQLDB
software base directory.
The file name may actually have a version label in it, like
sqltool-1.2.3.jar (in which case, you must specify the full name here).
A 'hsqldb.jar' file (with or without version label) must reside in the same
directory as the specified sqltool.jar file.
SQLTOOL_JAR_PATH=/opt/hsqldb-2.0.0/hsqldb/lib/sqltool.jar
For the sample value above, there must also exist a file
/opt/hsqldb-2.0.0/hsqldb/lib/hsqldb*.jar.

Where the file "server.properties" or "webserver.properties" resides.
SERVER_HOME=/opt/hsqldb-2.0.0/hsqldb/data

What UNIX user the server will run as.
(The shutdown client is always run as root or the invoker of the init script).
Runs as root by default, but you should take the time to set database file
ownerships to another user and set that user name here.
HSQLDB_OWNER=hsqldb

The HSQLDB jar file specified in HSQLDB_JAR_PATH above will automatically
be in the class path. This arg specifies additional classpath elements.
To embed your own application, add your jar file(s) or class base
directories here, and add your main class to the INVOC_ADDL_ARGS setting
below. Another common use-case for adding to your class path is to make
classes available to the DB engines for SQL/JRT functions and procedures.

HyperSQL on UNIX

329

#SERVER_ADDL_CLASSPATH=/usr/local/dist/currencybank.jar

For startup or shutdown failures, you can save a lot of debugging time by
temporarily adjusting down MAX_START_SECS and MAX_TERMINATE_SECS to a
little over what it should take for successful startup and shutdown on
your system.

We require all Server/WebServer instances to be accessible within
$MAX_START_SECS from when the Server/WebServer is started.
Defaults to 60.
Raise this is you are running lots of DB instances or have a slow server.
#MAX_START_SECS=200

Max time to allow for JVM to die after all HSQLDB instances stopped.
Defaults to 60. Set high because the script will always continue as soon as
the process has stopped. The importance of this setting is, how long until
a non-stopping-JVM-problem will be detected.
#MAX_TERMINATE_SECS=0

NEW AND IMPORTANT!!!
As noted at the top of this file, this setting replaces the old property
settings server.urlid.X.
Simply list the URLIDs for all DB instances which your *Server starts.
Usually, these will exactly mirror the server.database.X settings in your
server.properties or webserver.properties file.
Each urlid listed here must be defined to a NETWORK url with Admin privileges
in the AUTH_FILE specified below. (Network type because we use this for
inter-process communication)
Separate multiple values with white space. NO OTHER SPECIAL CHARACTERS!
Make sure to quote the entire value if it contains white space separator(s).
URLIDS='localhostdb1'

These are urlids # ** IN ADDITION TO URLIDS **, for instances which the init
script should stop but not start.
Most users will not need this setting. If you need it, you'll know it.
Defaults to none (i.e., only URLIDS will be stopped).
#SHUTDOWN_URLIDS='ondemand'

SqlTool authentication file used only for shutdown.
The default value will be sqltool.rc in root's home directory, since it is
root who runs the init script.
(See the SqlTool chapter of the HyperSQL Utilities Guide if you don't
understand this).
#AUTH_FILE=/home/blaine/sqltool.rc

Typical users will leave this unset and it will default to
org.hsqldb.server.Server. If you need to run the HSQLDB WebServer class
instead, due to a firewall or routing impediment, set this to
org.hsqldb.server.WebServer, see the docs about running WebServr, and
set up a "webserver.properties" file instead of a "server.properties".
The JVM that is started can invoke many classes (see the following item
about that), but this is the server that is used (1) to check status,
(2) to shut down the JVM.
#TARGET_CLASS=org.hsqldb.server.WebServer

This is where you may specify both command-line parameters to TARGET_CLASS,
plus any number of additional progams to run (along with their command-line
parameters). The MainInvoker program is used to embed these multiple
static main invocations into a single JVM, so see the API spec for
org.hsqldb.util.MainInvoker if you want to learn more.
N.b. You should only use this setting to set HSQLDB Server or WebServer
parameters if you run multiple instances of this class, since you can use the
server/webserver.properties file for a single instance.
Every additional class (in addition to the TARGET_CLASS)
must be preceded with an empty string, so that MainInvoker will know
you are giving a class name. MainInvoker will invoke the normal
static main(String[]) method of each such class.

HyperSQL on UNIX

330

By default, MainInvoker will just run TARGET_CLASS with no args.
Example that runs just the TARGET_CLASS with the specified arguments:
#INVOC_ADDL_ARGS='-silent false' #but use server.properties property instead!
Example that runs the TARGET_CLASS plus a WebServer:
#INVOC_ADDL_ARGS='"" org.hsqldb.server.WebServer'
Note the empty string preceding the class name.
Example that starts TARGET_CLASS with an argument + a WebServer +
your own application with its args (i.e., the HSQLDB Servers are
"embedded" in your application). (Set SERVER_ADDL_CLASSPATH too).:
#INVOC_ADDL_ARGS='-silent false "" org.hsqldb.server.WebServer "" com.acme.Stone --env prod
 localhost'
but use server.properties for -silent option instead!
Example to run a non-TLS server in same JVM with a TLS server. In this
case, TARGET_CLASS is Server which will run both in TLS mode by virtue of
setting the tls, keyStore, and keyStorePassword settings in
server*.properties, as described below; plus an "additional" Server with
overridden 'tls' and 'port' settings:
#INVOC_ADDL_ARGS="'' org.hsqldb.server.Server --port 9002 --tls false"
This is an important use case. If you run more than one Server instance,
you can specify different parameters for each here, even though only one
server.properties file is supported.
Note that you use nested quotes to group arguments and to specify the
empty-string delimiter.

The TLS_* settings have been obsoleted.
To get your server running with TLS, set
system.javax.net.ssl.keyStore=/path/to/your/private.keystore
system.javax.net.ssl.keyStorePassword=secretPassword
server.ssl=true
IN server.properties or webserver.properties, and
MAKE THE FILE OWNER-READ-ONLY!
See the TLS Encryption section of the HyperSQL User Guide, paying attention
to the security warning(s).
If you are running with a private server cert, then you will also need to
set "truststore" in the your SqlTool config file (location is set by the
AUTH_FILE variable in this file, or it must be at the default location for
HSQLDB_OWNER).

Any JVM args for the invocation of the JDBC client used to verify DB
instances and to shut them down (SqlToolSprayer).
Server-side System Properties should normally be set with system.*
settings in the server/webserver.properties file.
This example specifies the location of a private trust store for TLS
encryption.
For multiple args, put quotes around entire value.
If you are starting just a TLS_encrypted Listener, you need to uncomment
this so the init scripts uses TLS to connect.
If using a private keystore, you also need to set "truststore" settings in
the sqltool.rc file.
#CLIENT_JVMARGS=-Djavax.net.debug=ssl
This sample value displays useful debugging information about TLS/SSL.

Any JVM args for the server.
For multiple args, put quotes around entire value.
#SERVER_JVMARGS=-Xmx512m
You can set the "javax.net.debug" property on the server side here, in the
same exact way as shown for the client side above.

Verify that the init script works.

Just run

 /path/to/hsqldb

as root to see the arguments you may use. Notice that you can run

HyperSQL on UNIX

331

 /path/to/hsqldb status

at any time to see whether your HSQLDB Listener is running.

Re-run the script with each of the possible arguments to really test it good. If anything doesn't work right, then
see the Troubleshooting the Init Script section.

5. Tell your OS to run the init script upon system startup and shutdown. If you are using a UNIX variant that has
/etc/rc.conf or /etc/rc.conf.local (like BSD variants and Gentoo), you must set "hsqldb_enable"
to "YES" in either of those files. (Just run cd /etc; ls rc.conf rc.conf.local to see if you have
one of these files). For good UNIXes that use System V style init, you must set up hard links or soft links either
manually or with management tools (such as chkconfig or insserv) or GUIs (like run level editors).

This paragraph is for Mac OS X users only. If you followed the instructions above, your init script should reside at
/Library/StartupItems/hsqldb/hsqldb. Now copy the file StartupParameters.plist from
the directory src/org.hsqldb/sample of your HSQLDB distribution to the same directory as the init
script. As long as these two files reside in /Library/StartupItems/hsqldb, your init script is active
(for portability reasons, it doesn't check for a setting in /etc/hostconfig). You can run it as a Startup Item
by running

 SystemStarter {start|stop|restart} Hsqldb

Hsqldb is the service name. See the man page for SystemStarter. To disable the init script, wipe out the /
Library/StartupItems/hsqldb directory. Hard to believe, but the Mac people tell me that during system
shutdown the Startup Items don't run at all. Therefore, if you don't want your data corrupted, make sure to run
"SystemStarter stop Hsqldb" before shutting down your Mac.

Follow the examples in the config file to add additional classes to the server JVM's classpath and to execute additional
classes in your JVM. (See the SERVER_ADDL_CLASSPATH and INVOC_ADDL_ARGS items).

Troubleshooting the Init Script
Definitely look at the init script log file, which is at an OS-sependent location, but is usually at /var/log/
hsqldb.log.

Do a ps to look for processes containing the string hsqldb, and try to connect to the database from any client. If the init
script starts up your database successfully, but incorrectly reports that it has not, then your problem is with specification
of urlid(s) or SqlTool setup. If your database really did not start, then skip to the next paragraph. Verify that your
config file assigns a urlid for each catalog defined in server.properties or webserver.properties, then
verify that you can run SqlTool as root to connect to the catalogs with these urlids. (For the latter test, use the --
rcfile switch if you are setting AUTH_FILE in the init script config file).

If your database really is not starting, then verify that you can su to the database owner account and start the database.
The command su USERNAME -c ... won't work on most UNIXes unless the target user has a real login shell.
Therefore, if you try to tighten up security by disabling this user's login shell, you will break the init script. If these
possibilities don't pan out, then debug the init script or seek help, as described below.

To debug the init script, run it in verbose mode to see exactly what is happening (and perhaps manually run the steps
that are suspect). To run an init script (in fact, any sh shell script) in verbose mode, use sh with the -x or -v switch, like

 sh -x path/to/hsqldb start

See the man page for sh if you don't know the difference between -v and -x.

If you want troubleshooting help, use the HSQLDB lists/forums. Make sure to include the revision number from your
hsqldb init script (it's towards the top in the line that starts like "# $Id:"), and the output of a run of

HyperSQL on UNIX

332

 sh -x path/to/hsqldb start > /tmp/hstart.log 2>&1

Upgrading
This section is for users who are using our UNIX init script, and who are upgrading their HyperSQL installation.

Most users will not have customized the init script itself, and your customizations will all be encapsulated in the
init script configuration file. These users should just overwrite their init script with a new one from the HyperSQL
installation, and manually merge config file settings. First, just copy the file /sample/hsqldb.init over top of
of your init script (wherever it runs from). Then update your old config file according to the instructions in the new
config file template at sample/hsqldb.conf. You will have to change very few settings. If you are upgrading
from a pre-2.0 installation to a post-2.0 installation, you will need to (1) add the setting URLIDS, as described above
and in the inline comments, and (2) replace variable HSQLDB_JAR_PATH with SQLTOOL_JAR_PATH which (if
you haven't guessed) should be set to the path to your sqltool.jar file.

Users who customized their init script will need to merge their customizations into the new init script.

333

Chapter 17. HyperSQL via ODBC
How to access a HyperSQL Server with ODBC

Blaine Simpson, The HSQL Development Group
$Revision: 5999 $
2022-10-20

Overview
Support for ODBC access to HyperSQL servers was introduced in HSQLDB version 2.0. Modified versions of the
PostgreSQL ODBC software (version 8.3) were developed and an installer for 32 bit Windows was made available for
download. Improvements were made to the server code for version 2.5.1 to allow an unmodified PostgreSQL ODBC
driver (version 11) to be used. This chapter has been adapted from the original ODBC documentation and added to
this Guide.

The current version supports a large subset of ODBC calls. It supports all SQL statements, including prepared
statements and result set metadata, but it does not yet support database metadata, so some applications may not work.

Unix / Linux Installation
Install unixODBC and PostgreSQL psqlodbc RPM or package. See https://help.interfaceware.com/
v6/connect-to-postgresql-from-linux-or-mac-with-odbc

See the Settings section about individual driver runtime settings.

The unixODBC graphical program "ODBCConfig" just does not work for any driver I have ever tried to add. If the
same applies to you, you will need to edit the files

• /etc/unixODBC/odbc.ini Driver definitions

• /etc/unixODBC/odbcinst.ini Global DSN definitions

• $HOME/.odbc.ini Personal DSN definitions

Depending on your UNIX or unixODBC distribution, your etc config files may be directly in /etc/ instead of in
the unixODBC subdirectory.

Windows Installation
Download and install PostgreSQL ODBC software. We tested with version 11 of this software in Unicode mode, but
other versions may also work. In Windows, go to ODBC Data Source Administrator (via Administrative Tools, Data
Source (ODBC) or ODBC DataSource in different versions of Windows) and click on Add to add a PostgreSQL data
source. You can then configure the data source.

See the Settings section about individual driver runtime settings.

These DSN definition screens are not identical to what you see, but the individual settings are the same. The Data
Source field is the name of the ODBC data source. The database is the name of the HyperSQL database on the server.
In this example, the default server database name is indicated with a slash. Use localhost as the Server name for the

HyperSQL via ODBC

334

local machine. The User Name is a user name of the HyperSQL database, by default SA. You must set a non-empty
password for the user, otherwise connection cannot be established.

The HyperSQL server must be started before testing the connection.

Then option screen 1 of 2.

HyperSQL via ODBC

335

... and 2 of 2.

HyperSQL via ODBC

336

Settings
This section applies to both UNIX and Windows. The setting heading includes the descriptive name as shown by the
Windows ODBC DS Administrator, as well as the real keyword names that UNIX users will use.

The PostgreSQL ODBC Driver product consists of two driver variants. You should try to use the Unicode variant
first, since it supports the later and better ODBC protocol. Use the ANSI variant if the Unicode variant won't work for
your application. The way you select the driver variant for a DSN is platform-specific. For UNIX, set the DSN setting
Driver to the key as defined in the uniXODBC config file /etc/unixODBC/odbcinst.ini. For UNIX, select
the driver after you click Add on the User DSN screen, or switch it afterwards with the DSN's Manage DSN button.

Driver settings can also be made at connection time by just appending keyword abbreviation/value assignment pairs
to the ODBC connection string, delimiting each such pair with a semicolon. Base connection Strings are language-
dependent, but you always append a String in this form

;A0=0;B9=1

See the Table below for a concise list of the abbreviations you may use. The appendix also shows the default values
for settings (this is really only necessary for UNIX users, since the Windows DSN manager always shows the current
effective value).

HyperSQL via ODBC

337

Runtime Driver Settings

Database ODBC does not allow an empty string for a DSN database name. Therefore,
you must specify DSN database name of "/" (without the quotes) to indicate the
default database

Recognize Unique Indexes

Cancel as FreeeStmt Find out what this experimental feature is for.

MyLog Enables fairly verbose runtime logging to the indicated file. With value 1 will
write coded mylog() messages to the MyLog file. With value 2 will write both
mylog() and inolog() messages to MyLog file.

CommLog Enables runtime communiction logging to the indicated file. With value 1, will
write coded qlog() messages to the CommLog.

Unknown Sizes This controls what SQLDescribeCol and SQLColAttributes will return
as to precision for the variable data types when the precision
(for example for a column) is unspecified. For the recommended
sql_enforce_strict_size mode, this setting will have no effect.

• Maximum: Always return the maximum precision of the data type.

• Dont Know: Return "Don't Know" value and let application decide.

• Longest: Return the longest string length of the column of any row. Beware
of this setting when using cursors because the cache size may not be a good
representation of the longest column in the cache.

MS Access: Seems to handle Maximum setting ok, as well as all the others.
Borland: If sizes are large and lots of columns, Borland may crash badly (it
doesn't seem to handle memory allocation well) if using Maximum size.

Max Varchar Use this setting only as a work-around for client app idiocy. Generally, the
database should enforce your data constraints.

The maximum precision of the VARCHAR and CHAR types (perhaps others).
Set to 1 larger than the value you need, to allow for null terminator characters.
The default is 255 right now. 0 really means max of 0, and we need to change
this ASAP so that 0 will mean unlimited.

If you set this value higher than 254, Access will not let you index on varchar
columns!

Cache Size When using cursors, this is the row size of the tuple cache. If not using cursors,
this is how many tuples to allocate memory for at any given time. The default
is 100 rows for either case.

Max LongVarChar The maximum precision of the LongVarChar type. The default is 4094 which
actually means 4095 with the null terminator. You can even specify (-4) for this
size, which is the odbc SQL_NO_TOTAL value.

ReadOnly Whether the datasource will allow updates.

Show System Tables The driver will treat system tables as regular tables in SQLTables. This is good
for Access so you can see system tables.

LF <-> CR/LF conversion Convert Unix style line endings to DOS style.

HyperSQL via ODBC

338

Updatable Cursors Enable updateable cursor emulation in the driver. Fred will be implementing
real Updatable ResultSets.

Row Versioning Will turn on MVCC currency control mode, once we implement this.

True is -1 Represent TRUE as -1 for compatibility with some applications.

Int8 As Define what datatype to report int8 columns as.

Extra Opts Extra Opts: combination of the following bits.

• 0x1: Force the output of short-length formatted connection string. Check this
bit when you use MFC CDatabase class.

• 0x2: Fake MS SQL Server so that MS Access recognizes PostgreSQL's serial
type as AutoNumber type.

• 0x4: Reply ANSI (not Unicode) char types for the inquiries from
applications. Try to check this bit when your applications don't seem to be
good at handling Unicode data.

OID Options • Show Column: Includes the OID in SQLColumns. This is good for using as
a unique identifier to update records if no good key exists OR if the key has
many parts, which blows up the backend.

• Fake Index: This option fakes a unique index on OID. This is useful when
there is not a real unique index on OID and for apps which can't ask what the
unique identifier should be (i.e, Access 2.0).

OID Options Level of rollback on errors: Specifies what to rollback should an error occur.

• Nop(0): Don't rollback anything and let the application handle the error.

• Transaction(1): Rollback the entire transaction.

• Statement(2): Rollback the statement.
default value is a sentence unit (it is a transaction unit before 8.0).

Connection Settings The driver sends these commands to the backend upon a successful connection.
It sends these settings AFTER it sends the driver "Connect Settings". Use a
semi-colon (;) to separate commands. This can now handle any query, even if
it returns results. The results will be thrown away however!

Samples
The HyperSQL Engine distribution contains these same ODBC client code examples in the sample subdirectory.

• Python pyodbc sample [../verbatim/sample/sample.py]

• PHP ODBC sample [../verbatim/sample/sample.php]

• Perl DBI/DBD sample [../verbatim/sample/sample.pl]

• C client sample [../verbatim/sample/sample.c]

Table of Settings
See the above section for descriptions and usage details. This section just contains a list of the available settings.

../verbatim/sample/sample.py
../verbatim/sample/sample.py
../verbatim/sample/sample.php
../verbatim/sample/sample.php
../verbatim/sample/sample.pl
../verbatim/sample/sample.pl
../verbatim/sample/sample.c
../verbatim/sample/sample.c

HyperSQL via ODBC

339

Table 17.1. Settings List

Keyword Abbrev. Default Val. Purpose

Description N/A Data source description

Servername N/A [required] Name of Server

Port N/A 9001 HyperSQL Server Listen
Port

Username N/A [required] User Name

Password N/A [required] Password

Debug B2 0 MyLog logging level

Fetch A7 100 Fetch Max Count Test
to see if this applies
to EXECDIRECT and/or
prepared queries

Socket A8 4096 Socket buffer size

ReadOnly A0 No/0 Read Only

CommLog B3 0 Log communications to log
file

UniqueIndex N/A 1 Recognize unique indexes

UnknownSizes A9 0 [= max prec. for type] Unknown result set sizes

CancelAsFreeStmt C1 0 Cancel as FreeStmt

UnknownsAsLongVarchar B8 0 Unknowns as LongVarchar

BoolsAsChar B9 0 Bools as Char

MaxVarcharSize B0 255 Max Varchar size. Value
of 0 will break everything.
We will be changing 0 to
mean unlimited and will
then change the default to 0.

MaxLongVarcharSize B1 8190 Max LongVarchar size

RowVersioning A4 0 Row Versioning

ShowSystemTables A5 0 Show System Tables

DisallowPremature C3 0 Disallow Premature

UpdatableCursors C4 0 Updatable Cursors

LFConversion C5 1 Windows, 0 UNIX LF <-> CR/LF conversion

TrueIsMinus1 C6 0 True is -1

BI N/A 0 Datatype to report BIGINT
columns as

LowerCaseIdentifier C9 0 Lower case identifier

SSLmode CA disable SSL mode

AB N/A Connection string suffix
options

Abbreviations are for use in connection strings.

340

Appendix A. Lists of Keywords
List of SQL Keywords
Fred Toussi, The HSQL Development Group
$Revision: 847 $
2022-10-20

List of SQL Standard Keywords
According to the SQL Standard, the SQL Language keywords cannot be used as identifiers (names of database objects
such as columns and tables) without quoting.

HyperSQL has two modes of operation, which are selected with the SET DATABASE SQL NAMES { TRUE |
FALSE } to allow or disallow the keywords as identifiers. The default mode is FALSE and allows the use of most
keywords as identifiers. Even in this mode, keywords cannot be used as USER or ROLE identifiers. When the mode
is TRUE, none of the keywords listed below can be used as identifiers.

All keywords can be used with double quotes as identifiers. For example

 CREATE TABLE "ALL" ("AND" INT, "WHEN" INT)
 SELECT "AND" FROM "ALL" WHERE "WHEN" = 2022

ABS • ALL • ALLOCATE • ALTER • AND • ANY • ARE • ARRAY • AS • ASENSITIVE • ASYMMETRIC • AT
• ATOMIC • AUTHORIZATION • AVG

BEGIN • BETWEEN • BIGINT • BINARY • BLOB • BOOLEAN • BOTH • BY

CALL • CALLED • CARDINALITY • CASCADED • CASE • CAST • CEIL • CEILING • CHAR • CHAR_LENGTH
• CHARACTER • CHARACTER_LENGTH • CHECK • CLOB • CLOSE • COALESCE • COLLATE • COLLECT
• COLUMN • COMMIT • COMPARABLE • CONDITION • CONNECT • CONSTRAINT • CONVERT • CORR
• CORRESPONDING • COUNT • COVAR_POP • COVAR_SAMP • CREATE • CROSS • CUBE • CUME_DIST
• CURRENT • CURRENT_CATALOG • CURRENT_DATE • CURRENT_DEFAULT_TRANSFORM_GROUP •
CURRENT_PATH • CURRENT_ROLE • CURRENT_SCHEMA • CURRENT_TIME • CURRENT_TIMESTAMP
• CURRENT_TRANSFORM_GROUP_FOR_TYPE • CURRENT_USER • CURSOR • CYCLE

DATE • DAY • DEALLOCATE • DEC • DECIMAL • DECLARE • DEFAULT • DELETE • DENSE_RANK •
DEREF • DESCRIBE • DETERMINISTIC • DISCONNECT • DISTINCT • DO • DOUBLE • DROP • DYNAMIC

EACH • ELEMENT • ELSE • ELSEIF • END • END_EXEC • ESCAPE • EVERY • EXCEPT • EXEC • EXECUTE
• EXISTS • EXIT • EXP • EXTERNAL • EXTRACT

FALSE • FETCH • FILTER • FIRST_VALUE • FLOAT • FLOOR • FOR • FOREIGN • FREE • FROM • FULL •
FUNCTION • FUSION

GET • GLOBAL • GRANT • GROUP • GROUPING

HANDLER • HAVING • HOLD • HOUR

IDENTITY • IN • INDICATOR • INNER • INOUT • INSENSITIVE • INSERT • INT • INTEGER • INTERSECT •
INTERSECTION • INTERVAL • INTO • IS • ITERATE

JOIN

LAG

LANGUAGE • LARGE • LAST_VALUE • LATERAL • LEAD • LEADING • LEAVE • LEFT • LIKE •
LIKE_REGEX • LN • LOCAL • LOCALTIME • LOCALTIMESTAMP • LOOP • LOWER

Lists of Keywords

341

MATCH • MAX • MAX_CARDINALITY • MEMBER • MERGE • METHOD • MIN • MINUTE • MOD • MODIFIES
• MODULE • MONTH • MULTISET

NATIONAL • NATURAL • NCHAR • NCLOB • NEW • NO • NONE • NORMALIZE • NOT • NTH_VALUE •
NTILE • NULL • NULLIF • NUMERIC

OCCURRENCES_REGEX • OCTET_LENGTH • OF • OFFSET • OLD • ON • ONLY • OPEN • OR • ORDER •
OUT • OUTER • OVER • OVERLAPS • OVERLAY

PARAMETER • PARTITION • PERCENT_RANK • PERCENTILE_CONT • PERCENTILE_DISC • PERIOD •
POSITION • POSITION_REGEX • POWER • PRECISION • PREPARE • PRIMARY • PROCEDURE

RANGE • RANK • READS • REAL • RECURSIVE • REF • REFERENCES • REFERENCING • REGR_AVGX •
REGR_AVGY • REGR_COUNT • REGR_INTERCEPT • REGR_R2 • REGR_SLOPE • REGR_SXX • REGR_SXY
• REGR_SYY • RELEASE • REPEAT • RESIGNAL • RESULT • RETURN • RETURNS • REVOKE • RIGHT •
ROLLBACK • ROLLUP • ROW • ROW_NUMBER • ROWS

SAVEPOINT • SCOPE • SCROLL • SEARCH • SECOND • SELECT • SENSITIVE • SESSION_USER • SET •
SIGNAL • SIMILAR • SMALLINT • SOME • SPECIFIC • SPECIFICTYPE • SQL • SQLEXCEPTION • SQLSTATE
• SQLWARNING • SQRT • STACKED • START • STATIC • STDDEV_POP • STDDEV_SAMP • SUBMULTISET
• SUBSTRING • SUBSTRING_REGEX • SUM • SYMMETRIC • SYSTEM • SYSTEM_USER

TABLE • TABLESAMPLE • THEN • TIME • TIMESTAMP • TIMEZONE_HOUR • TIMEZONE_MINUTE •
TO • TRAILING • TRANSLATE • TRANSLATE_REGEX • TRANSLATION • TREAT • TRIGGER • TRIM •
TRIM_ARRAY • TRUE • TRUNCATE

UESCAPE • UNDO • UNION • UNIQUE • UNKNOWN • UNNEST • UNTIL • UPDATE • UPPER • USER • USING

VALUE • VALUES • VAR_POP • VAR_SAMP • VARBINARY • VARCHAR • VARYING

WHEN • WHENEVER • WHERE • WIDTH_BUCKET • WINDOW • WITH • WITHIN • WITHOUT • WHILE

YEAR

List of SQL Keywords Disallowed as HyperSQL
Identifiers
When the default SET DATABASE SQL NAMES FALSE mode is used, only a subset of SQL Standard keywords
cannot be used as HyperSQL identifiers. The keywords are as follows:

ALL • AND • ANY • AS • AT • AVG

BETWEEN • BOTH • BY

CALL • CASE • CAST • COALESCE • CORRESPONDING • CONVERT • COUNT • CREATE • CROSS • CUBE

DEFAULT • DISTINCT • DROP

ELSE • EVERY • EXISTS • EXCEPT

FETCH • FOR • FROM • FULL

GRANT • GROUP • GROUPING

HAVING

Lists of Keywords

342

IN • INNER • INTERSECT • INTO • IS

JOIN

LEFT • LEADING • LIKE

MAX • MIN

NATURAL • NOT • NULLIF

ON • ORDER • OR • OUTER

PRIMARY

REFERENCES • RIGHT • ROLLUP

SELECT • SET • SOME • STDDEV_POP • STDDEV_SAMP • SUM

TABLE • THEN • TO • TRAILING • TRIGGER

UNION • UNIQUE • USING

VALUES • VAR_POP • VAR_SAMP

WHEN • WHERE • WITH

Special Function Keywords
HyperSQL supports SQL Standard functions that are called without parentheses. These functions include
CURRENT_DATE, LOCALTIMESTAMP, TIMEZONE_HOUR, USER, etc. When the default SET DATABASE
SQL NAMES FALSE mode is used, keywords that are names of SQL functions can be used as column names without
double quotes in CREATE TABLE statements . But when the identifier is a column name and is referenced in SELECT
or other statements, the keywords must be double quoted. Otherwise the result of the SQL function is returned instead
of the column value.

HyperSQL also supports non-standard functions SYSTIMESTAMP, CURDATE, CURTIME, TODAY, SYSDATE
and NOW which can be called with or without parentheses (e.g. NOW() or NOW). These names can be used as
column names, but the names must be double quoted in SELECT and other statements.

343

Appendix B. HyperSQL Database Files and
Recovery
$Revision: 5925 $
2022-10-20

Database Files
Database catalogs opened with the file: protocol are stored as a set of files. This document describes the contents of
these files and how they are stored.

A database named 'test' is used in this description. The database files will be as follows.

Database Files

test.properties Contains the entry 'modified'. If the entry 'modified' is set to 'yes' then the database is either
running or was not closed correctly. When the database is properly shutdown, 'modified' is
set to 'no'.

test.script This file contains the SQL statements that makes up the database up to the last checkpoint -
it is in sync with the contents of test.backup.

test.data This file contains the binary data records for CACHED tables only.

test.backup Depending on the backup mode (SET FILES BACKUP INCREMENT {TRUE | FALSE}),
this file contains either a backup of the parts of the test.data that have been modified
since the last checkpoint (the default setting, TRUE) or the complete compressed backup of
the test.data file at the time of last checkpoint (when FALSE).

test.log This file contains the extra SQL statements that have modified the database since the last
checkpoint. It is used as a redo log.

test.lobs This file contains the lobs. If a database has no BLOB or CLOB object, this file will not be
present. This file contains all the lobs that are currently in the database, as well as those that
belong to rows that have been deleted since the last checkpoint. The space for deleted lobs
is always reused after a CHECKPOINT.

A CHECKPOINT is an operations that saves all the changed data and removes the test.log followed by the creation
of an empty log. A SHUTDOWN is equivalent to a CHECKPOINT followed by closing the database.

States
Database is closed correctly

State after running the SHUTDOWN statement

• The test.data file is fully updated.

• When BACKUP INCREMENT TRUE is used, there is no test.backup at all. Otherwise the test.backup
contains the full compressed test.data file.

• The test.script contains all the metadata and CREATE TABLE and other DDL statements. It also contains
the data for MEMORY tables.

HyperSQL Database Files and
Recovery

344

• The test.properties contains the entry 'modified' set to 'no'.

• There is no test.log file.

Database is closed correctly with SHUTDOWN SCRIPT

State after running the SHUTDOWN SCRIPT statement

• The test.data file does not exist; all CACHED table data is in the test.script file

• The test.backup does not exist.

• The test.script contains all the metadata and DDL statements, followed by the data for MEMORY, CACHED
and TEXT tables.

• The test.properties contains the entry 'modified' set to 'no'.

• There is no test.log file.

Database is aborted

If the database process was terminated with a SHUTDOWN, or the SHUTDOWN IMMEDIATELY was used, the
database is in aborted state.

Aborted database state

• The test.properties contains 'modified=yes'.

• The test.script contains a snapshot of the database at the last checkpoint.

• The test.data file is not necessarily consistent.

• The test.backup file contains just sections of the original test.data file, or a full snapshot of test.data
that corresponds to test.script at the time of the last checkpoint.

• The test.log file contain all data change statements executed since the checkpoint. As a result of abnormal
termination, the end of file may be incomplete.

Procedures
The database engine performs the following procedures internally in different circumstances.

Clean Shutdown

Procedure B.1. Clean HyperSQL database shutdown

1. The test.data file is written completely (all the modified cached table rows are written out) and closed.

2. If backup mode is not INCREMENT, the test.backup.new is created which contains the compressed
test.data file.

3. The file test.script.new is created using the current state of the database.

4. The entry 'modified' in the properties file is set to 'yes-new-files' (Note: after this step, the test.data.new
and test.script.new files constitute the database)

HyperSQL Database Files and
Recovery

345

5. The file test.log is deleted

6. The file test.script is deleted

7. The file test.script.new is renamed to test.script

8. The file test.backup is deleted

9. If the file test.backup.new exists, it is renamed to test.backup

10. The entry 'modified' in the properties file is set to 'no'

Startup

Procedure B.2. Opening the Database

1. Check if the database files are in use by checking a special test.lck file.

2. See if the test.properties file exists, otherwise create it.

3. If the test.script did not exist, then this is a new database.

4. If it is an existing database, check in the test.properties file if 'modified=yes'. In this case the RESTORE
operation is performed before the database is opened normally.

5. Otherwise, if in the test.properties file 'modified=yes-new-files', then the (old) test.backup and
test.script files are deleted and the new test.script.new file is renamed to test.script.

6. Open the test.script file and create the database objects.

7. Create the empty test.log to append any data change statements.

Restore

The current test.data file is not necessarily consistent. The database engine takes these steps:

Procedure B.3. Restore a Database

1. Restore the old test.data file from the backup. Depending on the backup mode, decompress the
test.backup and overwrite test.data, or copy the original sections from the test.backup file.

2. Execute all the statements in the test.script file.

3. Execute all statements in the test.log file. If due to incomplete statements in this file an exception is thrown,
the rest of the lines in the test.log file are ignored. This can be overridden with the database connection
property hsqldb.full_log_replay=true which results in the startup process to fail and allows the user
to examine and edit the test.log file.

4. Close the database files, before opening the restored database.

346

Appendix C. Building HSQLDB Jars
How to build customized or specialized jar files
Blaine Simpson, The HSQL Development Group
Fred Toussi, The HSQL Development Group
$Revision: 6366 $
2022-10-20

Purpose
The hsqldb.jar file supplied in the lib directory of the zip release package is tested and built with Java 11. An
separate jar for Java 8 is also supplied in the same directory. The code is also tested extensively with Java 6-8 as well
as the latest Java versions. If you want to run with a Java 6 JVM, or use an alternative jar (hsqldb-min.jar, etc.),
you must build the desired jar with a JDK or download from hsqldb.org. You can also find official jars built with Java
8 and Java 11 in major maven repositories as well as downloads from hsqldb.org.

The Gradle task / Ant target explainjars reports the versions of Java and Ant actually used.

If you want to change Ant or Gradle build settings, edit the text file build.properties in the HyperSQL build
directory (creating it if it doesn't exist yet), and enter your properties using Java properties file syntax. (You can also
use local-docbook.properties in the same way for DocBook-specific properties).

Building with Gradle
Unlike most software build systems, you do not need to have the Gradle system installed on your computer to use it.
You don't need to understand the details to use it, but this is the purpose of the gradlew wrapper scripts that you can
see in HyperSQL's build directory. If you want or need to learn more about Gradle, you can start on the Gradle
web site [http://gradle.org].

Gradle honors JAVA_HOME

Gradle can find the Java to use by finding out where java is available from, but if environmental
variable JAVA_HOME is set, that will override. Therefore, if you have multiple JREs or JDKs installed, or
don't know if multiple are installed, you should set environmental variable JAVA_HOME to definitively
eliminate all ambiguity.

Rare Gotcha

Depending on your operating system, version, and how you installed your JDK, Gradle may not be
able to find the JDK. Gradle will inform you if this happens. The easiest way to fix this problem is to
set environmental variable JAVA_HOME to the root directory where your Java SDK is installed. (See
previous note for justification). So as not to get bogged down in the details here, if you don't know how
to set an environmental variable, I ask you to utilize a search engine.

You can invoke Gradle builds from the command-line.

1. Get a command-line shell. Windows users can use either Start/Run... or Start/Start Search, and enter "cmd". Non-
windows users will know how to get a shell.

2. In the shell, cd to the build directory under the root directory where you extracted or installed HyperSQL
to. (Operating system search or find functions can be used if you can't find it quickly by poking around on the
command line or with Windows Explorer, etc.).

http://gradle.org
http://gradle.org
http://gradle.org

Building HSQLDB Jars

347

3. Windows users can ignore this step. UNIX shell users should ensure that the current directory (.) is in their search
path, or prefix their gradlew command in the next step with ./ (e.g., like ./gradlew).

4. In the shell, run gradlew for a build.

If you ran just gradlew, then you will be presented with simple instructions for how to do everything that
you want to do. Basically, you will run the same gradlew command repeatedly, with different switches and
arguments for each build target.

Note

Gradle's -v switch reports version details more directly than the explainjars task does, from
the operating system version to the Groovy version (the language interpreter used for Gradle
instructions).

For example, the command below builds the hsqldb.jar file:

 gradlew hsqldb

The Gradle invocations actually run Ant build targets. Some of the targets are listed in the next section.

Building with Apache Ant
You should use version 1.9 or 1.10 of Ant (Another Neat Tool) to do Ant builds with HyperSQL.

Obtaining Ant
Ant is a part of the Apache Project.

• Home of the Apache Ant project [http://ant.apache.org]

• The Installing Ant [http://ant.apache.org/manual/install.html#installing] page of the Ant Manual [http://
ant.apache.org/manual]. Follow the directions for your platform.

Building HSQLDB with Ant
Once you have unpacked the zip package for hsqldb, under the /hsqldb folder, in /build there is a build.xml
file that builds the hsqldb.jar with Ant (Ant must be already installed). To use it, change to /build then type:

 ant -projecthelp

This displays the available Ant targets, which you can supply as command line arguments to ant. These include

hsqldb to build the hsqldb.jar file. This contains the engine and the GUI database manager.

explainjars Lists all targets which build jar files, with an explanation of the purposes of the different jars.

clean to clean up the /classes directory that is created during a build.

clean-all to remove the old jar and doc files as well as clean.

javadoc to build javadoc for all public classes accessible to user applications.

dbmanswing to build the dbmanagerswing.jar file

hsqldbmain to build a smaller jar for HSQLDB that does not contain utilities

http://ant.apache.org
http://ant.apache.org
http://ant.apache.org/manual/install.html#installing
http://ant.apache.org/manual/install.html#installing
http://ant.apache.org/manual
http://ant.apache.org/manual
http://ant.apache.org/manual

Building HSQLDB Jars

348

hsqldbmin to build a small jar that supports in-process catalogs, but not running HyperSQL Servers.

sqltool to build sqltool.jar, which contains only the SqlTool classes.

... Many more targets are available. Run ant -p and ant explainjars.

HSQLDB can be built in any combination of JRE (Java Runtime Environment) versions and many jar file sizes.

A jar built with an older JRE is compatible for use with a newer JRE (you can compile with Java 6 and run with 8).
But the newer JDBC capabilities of HyperSQL and the JRE will be not be available.

The smallest engine jar (hsqldbmin.jar) contains the engine and the HSQLDB JDBC Driver client.
The default size (hsqldb.jar) also contains server mode support and the utilities. The largest size
(hsqldbtest.jar)includes some test classes as well. Before building the hsqldbtest.jar package, you
should download the junit jar from http://www.junit.org and put it in the /lib directory, alongside servlet.jar,
which is included in the .zip package.

If you want your code built for high performance, as opposed to debugging (in the same way that we make our
production distributions), make a file named build.properties in your build directory with the contents

build.debug: false

The resulting Java binaries will be faster and smaller, at the cost of exception stack traces not identifying source code
locations (which can be extremely useful for debugging).

After installing Ant on your system use the following command from the /build directory. Just run ant
explainjars for a concise list of all available jar files.

ant explainjars

The command displays a list of different options for building different sizes of the HSQLDB Jar. The default is built
using:

Example C.1. Buiding the standard HSQLDB jar file with Ant

ant hsqldb

The Ant method always builds a jar with the JDK that is used by Ant and specified in its JAVA_HOME environment
variable.

The jars can be compiled with JDK 6 or later. Build has been tested under JDK versions 6, 8, 9, 10, 11, etc. The same
Ant version can be used with all the tested JDKs.

Building with IDE Compilers
The Ant build.xml can be used with most IDEs to build the Jar targets. All HyperSQL source files are supplied ready
to compile. It is therefore possible to compile the sources without using Ant direcly. If compilation with Java 6 is
required, you should run the Ant switchtojdk6 target before compiling to modify the files that have code blocks specific
to Java 8 or above (these are listed in the jdkcodeswitch.list file).

HyperSQL CodeSwitcher
CodeSwitcher is a tool to manage different version of Java source code. It allows to compile HyperSQL for different
JDKs. It is something like a precompiler in C but it works directly on the source code and does not create intermediate
output or extra files.

CodeSwitcher is used internally in the Ant build. You do not have to invoke it separately to compile HyperSQL.

http://www.junit.org

Building HSQLDB Jars

349

CodeSwitcher reads the source code of a file, removes comments where appropriate and comments out the blocks
that are not used for a particular version of the file. This operation is done for all files of a defined directory, and all
subdirectories.

Example C.2. Example source code before CodeSwitcher is run

 ...

 //#ifdef JAVA8

 properties.store(out,"hsqldb database");

 //#else

 /*

 properties.save(out,"hsqldb database");

 */

 //#endif

 ...

The next step is to run CodeSwitcher.

Example C.3. CodeSwitcher command line invocation

 java org.hsqldb.util.CodeSwitcher . -JAVA8

The '.' means the program works on the current directory (all subdirectories are processed recursively). -JAVA8 means
the code labelled with JAVA8 must be switched off.

Example C.4. Source code after CodeSwitcher processing

 ...

 //#ifdef JAVA8

 /*

 pProperties.store(out,"hsqldb database");

 */

 //#else

 pProperties.save(out,"hsqldb database");

 //#endif

 ...

For detailed information on the command line options run java org.hsqldb.util.CodeSwitcher. Usage
examples can be found in the build.xml file in the /build directory.

Building Documentation
The JavaDoc can be built simply by invoking the javadoc task/target with Gradle or Ant.

Building HSQLDB Jars

350

The two Guides (the one you are reading now plus the Utilities user guide) are in DocBook XML source format. To
rebuild to PDF or one of the HTML output formats from the XML source, run the Gradle target gen-docs (or the
Ant target gen-docs). Instructions will be displayed. In particular

• Obtain the HyperSQL documentation source. We no longer include our Guide source files in our main distribution
zip file, in order to keep it small. You may want to build from the trunk branch or the latest release tag. You
can download a static snapshot tarball from https://sourceforge.net/p/hsqldb/svn/HEAD/tree/ or you can use a
Subversion client such as TortoiseSVN to export a snapshot or check out a work area.

• You must locally install the DocBook set of image files, which are available for download from Sourceforge. The
gen-docs task/target will tell you of a Gradle task that you can use to download and install them automatically.
This Gradle task, installDbImages, will tell you how to edit a properties text file to tell it what directory to
install the files into. (Command-line, as opposed to GUI, builders, can use the Gradle -P switch to set the property,
instead of editing, if they prefer).

• You can optionally install the entire DocBook style sheets (instead of just the DocBook images within it), character
entity definitions, and RNG schema file, to speed up doc build times and minimize dependency of future builds
upon network or Internet. An intermediate approach would be to install these resources onto an HTTP server or
shared network drive of your own. See the comments at the top of the file build.xml in the HyperSQL build
directory about where to obtain these things and how to hook them in. The same Gradle task installDbImages
explained above can download and install the entire stylesheet bundle (this option is offered the first time that you
run the installDbImages task).

Tip

If running Gradle, you probably want to turn logging up to level info for generation and validation tasks,
because the default warn/lifecycle level doesn't give much feedback.

The task/target validate-docs is also very useful to DocBook builders.

The documentation license does not allow you to post modifications to our guides, but you can modify them for internal
use by your organization, and you can use our DocBook system to write new DocBook documents related or unrelated
to HyperSQL. To create new DocBook documents, create a subdirectory off of doc-src for each new document,
with the main DocBook source file within having same name as the directory plus .xml. See the peer directory util-
guide or guide as an example. If you use the high-level tasks/target gen-docs or validate-docs, then copy
and paste to add new stanzas to these targets in file build.xml.

Editors of DocBook documents (see previous paragraph for motive) may find it useful to have a standalone XML
validator so you can do your primary editing without involvement of the build system. Use the Gradle target
standaloneValidation for this. It will tell you how to set a build property to tell it where to install the validator,
and will give instructions on how to use it.

There are several properties that can be used to dramatically reduce run times for partial doc builds. Read about these
properties in comment at the top of the file build-docbook.xml in the build directory.

• validation.skip

• html.skip

• chunk.skip

• fo.skip

• pdf.skip

• doc.name

Building HSQLDB Jars

351

• doc.target

See the file doc-src/readme-docauthors.txt for details about our DocBook build system (though as I write
this it is somewhat out of date).

352

Appendix D. HyperSQL with OpenOffice
How to use HyperSQL with OpenOffice.org
Fred Toussi, The HSQL Development Group
$Revision: 6491 $
2022-10-20

HyperSQL with OpenOffice
OpenOffice.org / LibreOffice / ApacheOpenOffice includes HyperSQL and uses it for embedded databases. Our
collaboration with OpenOffice.org developers over 6 years has benefited the development and maturity of HyperSQL.
Before integration into OOo, HyperSQL was intended solely for application-specific database access. The application
developer was expected to resolve any integration issues. Because OpenOffice.org is used by a vast range of users,
from schoolchildren to corporate developers, a much higher level of quality assurance has been required. We have
achieved it with constant help and feedback from OOo users and developers.

Apart from embedded use, you may want to use OpenOffice / LibreOffice with a HyperSQL server instance. The
typical use for this is to allow multiple office users access to the same database.

There is also a strong case for using OpenOffice to develop your database schema and application, even if the database
is intended for your own application, rather than OpenOffice.

HyperSQ version 1.8.0 is included in OOo, ApacheOpenOffice and LibreOffice. You can simply replace the jar with
a HyperSQL version 2.7 jar to use the latest capabilities with external databases. It is not yet possible to create and
use embedded databases with this version.

HyperSQL version 2.x jar will hopefully be included in the future versions of ApacheOpenOffice and LibreOffice.

Using OpenOffice / LibreOffice as a Database Tool
OpenOffice is a powerful database front end. If you want to create schemas, edit tables, edit the database contents
manually, design and produce well-formatted reports, then OpenOffice is probably the best open source tools currently
available.

To connect from OpenOffice to your database, first run a local server instance for the database. This is describes in
the Network Listeners chapter of this guide.

When you connect from OpenOffice.org, you must specify connection to an external database and use the URL
property "default_schema=true". For example, the URL to connect the local database may be like

 jdbc;hsqldb:hsql://localhost/mydb;default_schema=true

The only current limitation is that OpenOffice only works with the PUBLIC schema. This limitation will hopefully
disappear in the future versions of OOo.

There will hopefully be a HyperSQL 2.x jar in future versions of OpenOffice.

Converting .odb files to use with HyperSQL Server
You may already have an OOo database file, which you want to use outside OOo, or as a server database. The file is
in fact in the standard ZIP format and contains the normal HyperSQL database files. Just use a utility such as 7Zip
to expand the .odb file. In the /db directory, there are files such as .script, .data, etc. Just rename these files into
mydb.script, mydb.data, etc. You can now open the mydb database directly with HyperSQL as an embedded database
or as a server instance.

HyperSQL with OpenOffice

353

OpenOffice / LibreOffice Extensions for HyperSQL
Since 2021, two new OOo and LO extensions are developed and maintained on GitHub by the developer prrvchr. These
extensions make it easy to use the latest version of HSQLDB 2.x with the latest versions of the Base program. One
extension simply adds and loads the HSQLDB 2.x jar, ready for use. It also allows updating the jar to the latest version.
The second extension extracts the database from the .odb file in the same directory and connects to the extracted
database files.

The simple driver: https://prrvchr.github.io/jdbcDriverOOo/

The driver that extracts the files: https://prrvchr.github.io/HsqlDBembeddedOOo/

The extensions are easy to use, with clear visual instructions on how to add the extensions to the Office suite and how
to create and open databases.

https://prrvchr.github.io/jdbcDriverOOo/
https://prrvchr.github.io/HsqlDBembeddedOOo/

354

Appendix E. HyperSQL File Links
HyperSQL Files referred to in this Guide

HyperSQL files referred to in the text may be retrieved from the canonical HyperSQL documentation site, http://
hsqldb.org/doc/2.0, or from the same location you are reading this page from.

Note

If you are reading this document with a standalone PDF reader, only the http://hsqldb.org/doc/2.0/... links
will function.

Pairs of local + http://hsqldb.org/doc/2.0 links for referenced files.

• Local: ../apidocs/org.hsqldb/org/hsqldb/jdbc/JDBCConnection.html

http://hsqldb.org/doc/2.0/apidocs/org.hsqldb/org/hsqldb/jdbc/JDBCConnection.html

• Local: ../apidocs/org.hsqldb/org/hsqldb/jdbc/JDBCDriver.html

http://hsqldb.org/doc/2.0/apidocs/org.hsqldb/org/hsqldb/jdbc/JDBCDriver.html

• Local: ../apidocs/org.hsqldb/org/hsqldb/jdbc/JDBCDatabaseMetaData.html

http://hsqldb.org/doc/2.0/apidocs/org.hsqldb/org/hsqldb/jdbc/JDBCDatabaseMetaData.html

• Local: ../apidocs/org.hsqldb/org/hsqldb/jdbc/JDBCResultSet.html

http://hsqldb.org/doc/2.0/apidocs/org.hsqldb/org/hsqldb/jdbc/JDBCResultSet.html

• Local: ../apidocs/org.hsqldb/org/hsqldb/jdbc/JDBCStatement.html

http://hsqldb.org/doc/2.0/apidocs/org.hsqldb/org/hsqldb/jdbc/JDBCStatement.html

• Local: ../apidocs/org.hsqldb/org/hsqldb/jdbc/JDBCPreparedStatement.html

http://hsqldb.org/doc/2.0/apidocs/org.hsqldb/org/hsqldb/jdbc/JDBCPreparedStatement.html

• Local: ../apidocs/org.hsqldb/org/hsqldb/util/MainInvoker.html

http://hsqldb.org/doc/2.0/apidocs/org.hsqldb/org/hsqldb/util/MainInvoker.html

• Local: ../apidocs/index.html

http://hsqldb.org/doc/2.0/apidocs/

• Local: ../verbatim/src/org/hsqldb/server/Servlet.java

http://hsqldb.org/doc/2.0/verbatim/src/org/hsqldb/server/Servlet.java

• Local: ../verbatim/src/org/hsqldb/Tokens.java

http://hsqldb.org/doc/2.0/verbatim/src/org/hsqldb/Tokens.java

• Local: ../verbatim/src/org/hsqldb/server/WebServer.java

http://hsqldb.org/doc/2.0/verbatim/src/org/hsqldb/server/WebServer.java

../apidocs/org.hsqldb/org/hsqldb/jdbc/JDBCConnection.html
http://hsqldb.org/doc/2.0/apidocs/org.hsqldb/org/hsqldb/jdbc/JDBCConnection.html
../apidocs/org.hsqldb/org/hsqldb/jdbc/JDBCDriver.html
http://hsqldb.org/doc/2.0/apidocs/org.hsqldb/org/hsqldb/jdbc/JDBCDriver.html
../apidocs/org.hsqldb/org/hsqldb/jdbc/JDBCDatabaseMetaData.html
http://hsqldb.org/doc/2.0/apidocs/org.hsqldb/org/hsqldb/jdbc/JDBCDatabaseMetaData.html
../apidocs/org.hsqldb/org/hsqldb/jdbc/JDBCResultSet.html
http://hsqldb.org/doc/2.0/apidocs/org.hsqldb/org/hsqldb/jdbc/JDBCResultSet.html
../apidocs/org.hsqldb/org/hsqldb/jdbc/JDBCStatement.html
http://hsqldb.org/doc/2.0/apidocs/org.hsqldb/org/hsqldb/jdbc/JDBCStatement.html
../apidocs/org.hsqldb/org/hsqldb/jdbc/JDBCPreparedStatement.html
http://hsqldb.org/doc/2.0/apidocs/org.hsqldb/org/hsqldb/jdbc/JDBCPreparedStatement.html
../apidocs/org.hsqldb/org/hsqldb/util/MainInvoker.html
http://hsqldb.org/doc/2.0/apidocs/org.hsqldb/org/hsqldb/util/MainInvoker.html
../apidocs/index.html
http://hsqldb.org/doc/2.0/apidocs/
../verbatim/src/org/hsqldb/server/Servlet.java
http://hsqldb.org/doc/2.0/verbatim/src/org/hsqldb/server/Servlet.java
../verbatim/src/org/hsqldb/Tokens.java
http://hsqldb.org/doc/2.0/verbatim/src/org/hsqldb/Tokens.java
../verbatim/src/org/hsqldb/server/WebServer.java
http://hsqldb.org/doc/2.0/verbatim/src/org/hsqldb/server/WebServer.java

HyperSQL File Links

355

• Local: ../verbatim/src/org/hsqldb/test/TestBase.java

http://hsqldb.org/doc/2.0/verbatim/src/org/hsqldb/test/TestBase.java

• Local: ../verbatim/src/org/hsqldb/trigger/Trigger.java

http://hsqldb.org/doc/2.0/verbatim/src/org/hsqldb/trigger/Trigger.java

• Local: ../verbatim/src/org/hsqldb/sample/TriggerSample.java

http://hsqldb.org/doc/2.0/verbatim/src/org/hsqldb/test/sample/TriggerSample.java

• Local: ../verbatim/src/org/hsqldb/util/MainInvoker.java

http://hsqldb.org/doc/2.0/verbatim/src/org/hsqldb/util/MainInvoker.java

• Local: ../verbatim/sample/hsqldb.conf

http://hsqldb.org/doc/2.0/verbatim/sample/hsqldb.conf

• Local: ../verbatim/sample/acl.txt

http://hsqldb.org/doc/2.0/verbatim/sample/acl.txt

• Local: ../verbatim/sample/server.properties

http://hsqldb.org/doc/2.0/verbatim/sample/server.properties

• Local: ../verbatim/sample/sqltool.rc

http://hsqldb.org/doc/2.0/verbatim/sample/sqltool.rc

• Local: ../verbatim/sample/hsqldb.init

http://hsqldb.org/doc/2.0/verbatim/sample/hsqldb.init

../verbatim/src/org/hsqldb/test/TestBase.java
http://hsqldb.org/doc/2.0/verbatim/src/org/hsqldb/test/TestBase.java
../verbatim/src/org/hsqldb/trigger/Trigger.java
http://hsqldb.org/doc/2.0/verbatim/src/org/hsqldb/trigger/Trigger.java
../verbatim/src/org/hsqldb/sample/TriggerSample.java
http://hsqldb.org/doc/2.0/verbatim/src/org/hsqldb/test/sample/TriggerSample.java
../verbatim/src/org/hsqldb/util/MainInvoker.java
http://hsqldb.org/doc/2.0/verbatim/src/org/hsqldb/util/MainInvoker.java
../verbatim/sample/hsqldb.conf
http://hsqldb.org/doc/2.0/verbatim/sample/hsqldb.conf
../verbatim/sample/acl.txt
http://hsqldb.org/doc/2.0/verbatim/sample/acl.txt
../verbatim/sample/server.properties
http://hsqldb.org/doc/2.0/verbatim/sample/server.properties
../verbatim/sample/sqltool.rc
http://hsqldb.org/doc/2.0/verbatim/sample/sqltool.rc
../verbatim/sample/hsqldb.init
http://hsqldb.org/doc/2.0/verbatim/sample/hsqldb.init

356

SQL Index
Symbols
_SYSTEM Role, 185

A
ABS function, 92
Access Rights, 186
ACOS function, 92
ACTION_ID function, 114
ADD_MONTHS function, 102
ADD COLUMN, 57
add column identity generator or sequence, 60
ADD CONSTRAINT, 58
ADD DOMAIN CONSTRAINT, 62
ADD SYSTEM PERIOD, 58
ADD SYSTEM VERSIONING, 59
ADMINISTRABLE_ROLE_AUTHORIZATIONS, 75
Admin USER, 185
aggregate function, 139
ALL and ANY predicates, 135
ALTER COLUMN, 59
alter column identity generator, 60
alter column nullability, 61
ALTER CONSTRAINT, 70
ALTER DOMAIN, 62
ALTER INDEX, 70
ALTER routine, 66
ALTER SEQUENCE, 68
ALTER SESSION, 171
ALTER TABLE, 57
ALTER USER ... SET INITIAL SCHEMA, 190
ALTER USER ... SET LOCAL, 190
ALTER USER ... SET PASSWORD, 189
ALTER view, 61
APPLICABLE_ROLES, 75
ASCII function, 83
ASCIISTR function, 83
ASIN function, 92
ASSERTIONS, 75
as subquery clause in table definition, 49
ATAN2 function, 93
ATAN function, 92
Authorisation and Access Control, 184
AUTHORIZATION IDENTIFIER, 185
AUTHORIZATIONS, 75

B
BACKUP DATABASE, 247
BETWEEN predicate, 134
binary literal, 122
BINARY types, 20

BIT_LENGTH function, 83
BITAND function, 93
BITANDNOT function, 93
bit literal, 123
BITNOT function, 93
BITOR function, 93
BIT types, 21
BITXOR function, 93
boolean literal, 124
BOOLEAN types, 19
boolean value expression, 132
Built-in Roles and Users, 185

C
CARDINALITY function, 107
CASCADE or RESTRICT, 46
case expression, 128
CASEWHEN function, 109
CASE WHEN in routines, 208
CAST, 129
CEIL function, 93
CHANGE_AUTHORIZATION, 186
CHAR_LENGTH, 83
CHARACTER_LENGTH, 83
CHARACTER_SETS, 75
character literal, 122
CHARACTER types, 19
character value function, 131
CHAR function, 83
CHECK_CONSTRAINT_ROUTINE_USAGE, 75
CHECK_CONSTRAINTS, 75
CHECK constraint, 53
CHECKPOINT, 248
COALESCE expression, 128
COALESCE function, 109
COLLATE, 141
COLLATIONS, 75
COLUMN_COLUMN_USAGE, 75
COLUMN_DOMAIN_USAGE, 75
COLUMN_PRIVILEGES, 75
COLUMN_UDT_USAGE, 75
column DEFAULT clause, 51
column definition, 49
column name list, 147
column reference, 126
COLUMNS, 75
COMMENT, 47
COMMIT, 173
comparison predicate, 133
CONCAT_WS function, 84
CONCAT function, 84
CONSTRAINT, 141
CONSTRAINT_COLUMN_USAGE, 75

SQL Index

357

CONSTRAINT_PERIOD_USAGE, 76
CONSTRAINT_TABLE_USAGE, 76
CONSTRAINT (table constraint), 52
CONSTRAINT name and characteristics, 51
CONTAINS predicate, 137
contextually typed value specification, 126
CONVERT function, 109
COS function, 93
COSH function, 93
COT function, 94
CREATE_SCHEMA Role, 186
CREATE AGGREGATE FUNCTION, 220
CREATE ASSERTION, 72
CREATE CAST, 70
CREATE CHARACTER SET, 71
CREATE COLLATION, 71
CREATE DOMAIN, 62
CREATE FUNCTION, 195
CREATE INDEX, 69
CREATE PROCEDURE, 195
CREATE ROLE, 191
CREATE SCHEMA, 47
CREATE SEQUENCE, 67
CREATE SYNONYM, 69
CREATE TABLE, 48
CREATE TRANSLATION, 72
CREATE TRIGGER, 63, 228
CREATE TYPE, 70
CREATE USER, 189
CREATE VIEW, 61
CROSS JOIN, 148
CRYPT_KEY function, 111
CURDATE function, 98
CURRENT_CATALOG function, 113
CURRENT_DATE function, 98
CURRENT_ROLE function, 112
CURRENT_SCHEMA function, 112
CURRENT_TIME function, 98
CURRENT_TIMESTAMP function, 98
CURRENT_USER function, 112
CURRENT VALUE FOR, 130
CURTIME function, 98

D
DATA_TYPE_PRIVILEGES, 76
DATABASE_ISOLATION_LEVEL function, 114
DATABASE_NAME function, 112
DATABASE_TIMEZONE function, 97
DATABASE_VERSION function, 112
DATABASE function, 112
DATE_ADD function, 103
DATE_SUB function, 103
DATEADD function, 103

DATEDIFF function, 103
DATENAME, DATEPART and EOMONTH functions,
99
datetime and interval literal, 124
Datetime Operations, 24
DATETIME types, 23
datetime value expression, 131
datetime value function, 131
DAYNAME function, 99
DAYOFMONTH function, 99
DAYOFWEEK function, 99
DAYOFYEAR function, 99
DAYS function datetime, 99
DBA Role, 185
DECLARE CURSOR, 121
DECLARE HANDLER, 204
DECLARE variable, 202
DECODE function, 110
DEGREES function, 94
DELETE FROM, 158
derived table, 146
DETERMINISTIC characteristic, 198
DIAGNOSTICS function, 111
DIFFERENCE function, 84
DISCONNECT, 174
DISTINCT, 153
DOMAIN_CONSTRAINTS, 76
DOMAINS, 76
DROP ASSERTION, 72
DROP CAST, 71
DROP CHARACTER SET, 71
DROP COLLATION, 71
DROP COLUMN, 58
drop column identity generator, 60
DROP CONSTRAINT, 58
DROP DEFAULT (table), 60
DROP DOMAIN, 63
DROP DOMAIN CONSTRAINT, 63
DROP DOMAIN DEFAULT, 62
DROP INDEX, 70
DROP ROLE, 191
DROP routine, 67
DROP SCHEMA, 48
DROP SEQUENCE, 68
DROP SYNONYM, 69
DROP SYSTEM PERIOD, 59
DROP SYSTEM VERSIONING, 59
DROP TABLE, 54
DROP TRANSLATION, 72
DROP TRIGGER, 64, 230
DROP USER, 189
DROP VIEW, 61
DYNAMIC RESULT SETS, 199

SQL Index

358

E
ELEMENT_TYPES, 76
ENABLED_ROLES, 76
EQUALS predicate, 137
EXISTS predicate, 136
EXP function, 94
EXPLAIN PLAN, 158
EXPLAIN REFERENCES, 73
expression, 128
external authentication, 246
EXTERNAL NAME, 197
EXTRACT function, 101

F
Fine Grained Data Access Control, 188
FLOOR function, 94
FOREIGN KEY constraint, 52
FOR loop in routines, 207
FROM_BASE64 function, 84
FROM_TZ function, 105

G
generated column specification, 50
GET DIAGNOSTICS, 164
GRANTED BY, 191
GRANT privileges, 191
GRANT role, 192
GREATEST function, 110
GROUP BY, 151
GROUPING OPERATIONS, 151

H
HAVING, 153
HEX function, 85
HEXTORAW function, 85
HOUR function, 100

I
identifier chain, 125
identifier definition, 45
IDENTITY function, 112
IF EXISTS, 46
IF NOT EXISTS, 46
IFNULL function, 110
IF STATEMENT, 209
INFORMATION_SCHEMA_CATALOG_NAME, 76
IN predicate, 134
INSERT function, 84
INSERT INTO, 159
INSTR function, 84
interval absolute value function, 132
interval term, 131
INTERVAL types, 28

IS_AUTOCOMMIT function, 113
IS_READONLY_DATABASE_FILES function, 113
IS_READONLY_DATABASE function, 113
IS_READONLY_SESSION function, 113
IS DISTINCT predicate, 137
ISNULL function, 110
IS NULL predicate, 135
ISOLATION_LEVEL function, 113

J
JOIN USING, 149
JOIN with condition, 149
JSON_ARRAY_AGG function, 91, 92
JSON_ARRAY function, 91
JSON_OBJECT function, 91

K
KEY_COLUMN_USAGE, 76
KEY_PERIOD_USAGE, 76

L
LANGUAGE, 197
LAST_DAY function, 102
LATERAL, 146
LCASE function, 85
LEAST function, 110
LEFT function, 85
LENGTH function, 85
like clause in table definition, 48
LIKE predicate, 135
Listing Users and Roles, 186
LN function, 94
LOAD_FILE function, 110
LOB_ID function, 114
LOCALTIME function, 98
LOCALTIMESTAMP function, 98
LOCATE function, 85
LOCK TABLE, 172
LOG10 function, 94
LOG function, 94
LOOP in routines, 207
LOWER function, 85
LPAD function, 86
LTRIM function, 86

M
MATCH predicate, 136
MAX_CARDINALITY function, 108
MERGE INTO, 162
MINUTE function, 100
MOD function, 94
MONTH function, 100
MONTHNAME function, 100

SQL Index

359

MONTHS_BETWEEN function, 102

N
name resolution, 151
naming in joined table, 150
naming in select list, 151
NATURAL JOIN, 149
NAVL function, 94
NEXT_DAY function, 101
NEXT VALUE FOR, 129
NOW function, 98
NULLIF function, 110
NULL INPUT, 198
numeric literal, 123
NUMERIC types, 17
numeric value expression, 130
numeric value function, 130
NUMTODSINTERVAL function, 105
NUMTOYMINTERVAL function, 105
NVL2 function, 111
NVL function, 111

O
OCTET_LENGTH function, 86
ON UPDATE clause (table constraint), 51
OTHER type, 22
OUTER JOIN, 149
OVERLAPS predicate, 138
OVERLAY function, 86

P
PARAMETERS, 76
password complexity, 246
PATH, 141
PERFORM CHECK INDEX, 250
PERFORM EXPORT DSV, 249
PERFORM EXPORT SCRIPT, 248
PERFORM IMPORT DSV file, 250
PERFORM IMPORT SCRIPT, 249
PERIODS, 76
PI function, 95
POSITION_ARRAY function, 108
POSITION function, 86
POWER function, 95
PRECEDES predicate, 138
PRIMARY KEY constraint, 52
PUBLIC Role, 185

Q
QUARTER function, 100

R
RADIANS function, 95

RAND function, 95
RAWTOHEX function, 86
REFERENTIAL_CONSTRAINTS, 76
REGEXP_COUNT function, 87
REGEXP_INSTR function, 87
REGEXP_LIKE function, 87
REGEXP_MATCHES function, 87
REGEXP_REPLACE function, 87
REGEXP_SUBSTR function, 87
REGEXP_SUBSTRING_ARRAY function, 87
REGEXP_SUBSTRING function, 87
RELEASE SAVEPOINT, 173
RENAME, 46
REPEAT ... UNTIL loop in routines, 207
REPEAT function, 88
REPLACE function, 88
replicated databases, 239
RESIGNAL STATEMENT, 211
RETURN, 209
RETURNS, 195
REVERSE function, 88
REVOKE privileges, 193
REVOKE ROLE, 193
RIGHT function, 88
ROLE_AUTHORIZATION_DESCRIPTORS, 76
ROLE_COLUMN_GRANTS, 77
ROLE_ROUTINE_GRANTS, 77
ROLE_TABLE_GRANTS, 77
ROLE_UDT_GRANTS, 77
ROLE_USAGE_GRANTS, 77
ROLLBACK, 173
ROLLBACK TO SAVEPOINT, 174
ROUND function datetime, 104
ROUND number function, 95
ROUTINE_COLUMN_USAGE, 77
ROUTINE_JAR_USAGE, 77
ROUTINE_PERIOD_USAGE, 77
ROUTINE_PRIVILEGES, 77
ROUTINE_ROUTINE_USAGE, 77
ROUTINE_SEQUENCE_USAGE, 77
ROUTINE_TABLE_USAGE, 77
routine body, 196
routine invocation, 141
ROUTINES, 77
ROW_NUMBER function, 115
ROWNUM function, 115
row value expression, 127
RPAD function, 88
RTRIM function, 88

S
SAVEPOINT, 173
SAVEPOINT LEVEL, 198

SQL Index

360

schema routine, 64
SCHEMATA, 77
SCRIPT, 248
SCRIPT_OPS Role, 186
search condition, 141
SECOND function, 100
SECONDS_SINCE_MIDNIGHT function, 100
SELECT, 143
SELECT : SINGLE ROW, 206
SEQUENCE_ARRAY function, 108
SEQUENCES, 77
SESSION_ID function, 113
SESSION_ISOLATION_LEVEL function, 114
SESSION_TIMEZONE function, 97
SESSION_USER function, 112
SESSIONTIMEZONE function, 97
SET AUTOCOMMIT, 171
SET CATALOG, 175
set clause in UPDATE and MERGE statements, 161
SET CONSTRAINTS, 172
SET DATABASE AUTHENTICATION FUNCTION,
269
SET DATABASE COLLATION, 250
SET DATABASE DEFAULT INITIAL SCHEMA, 190
SET DATABASE DEFAULT ISOLATION LEVEL,
254
SET DATABASE DEFAULT RESULT MEMORY
ROWS, 251
SET DATABASE DEFAULT TABLE TYPE, 251
SET DATABASE EVENT LOG LEVEL, 251
SET DATABASE GC, 252
SET DATABASE LIVE OBJECT, 261
SET DATABASE PASSWORD CHECK FUNCTION,
268
SET DATABASE SQL AVG SCALE, 259
SET DATABASE SQL CHARACTER LITERAL, 257
SET DATABASE SQL CONCAT NULLS, 258
SET DATABASE SQL CONVERT TRUNCATE, 259
SET DATABASE SQL DOUBLE NAN, 259
SET DATABASE SQL IGNORECASE, 260
SET DATABASE SQL LOWER CASE IDENTIFIER,
261
SET DATABASE SQL NAMES, 255
SET DATABASE SQL NULLS FIRST, 260
SET DATABASE SQL NULLS ORDER, 260
SET DATABASE SQL REFERENCES, 256
SET DATABASE SQL REGULAR NAMES, 255
SET DATABASE SQL RESTRICT EXEC, 254
SET DATABASE SQL SIZE, 255
SET DATABASE SQL SYNTAX DB2, 262
SET DATABASE SQL SYNTAX MSS, 262
SET DATABASE SQL SYNTAX MYS, 262
SET DATABASE SQL SYNTAX ORA, 263
SET DATABASE SQL SYNTAX PGS, 263

SET DATABASE SQL SYS INDEX NAMES, 261
SET DATABASE SQL TDC DELETE, 256
SET DATABASE SQL TRANSLATE TTI TYPES, 257
SET DATABASE SQL TRUNCATE TRAILING, 258
SET DATABASE SQL TYPES, 256, 257
SET DATABASE SQL UNIQUE NULLS, 258
SET DATABASE TEXT TABLE DEFAULTS, 253
SET DATABASE TRANSACTION CONTROL, 253
SET DATABASE TRANSACTION ROLLBACK ON
CONFLICT, 253, 253
SET DATABASE UNIQUE NAME, 254
SET DATA TYPE, 60
SET DEFAULT, 59
SET DOMAIN DEFAULT, 62
SET FILES BACKUP INCREMENT, 264
SET FILES CACHE ROWS, 264
SET FILES CACHE SIZE, 264
SET FILES DEFRAG, 265
SET FILES LOB COMPRESSED, 267
SET FILES LOB SCALE, 267
SET FILES LOG, 265
SET FILES LOG SIZE, 265
SET FILES NIO, 265
SET FILES NIO SIZE, 266
SET FILES SCALE, 266
SET FILES SCRIPT FORMAT, 267
SET FILES SPACE, 267
SET FILES WRITE DELAY, 266
set function specification, 127
SET IGNORECASE, 177
SET INITIAL SCHEMA*, 190
SET MAXROWS, 176
SET OPERATIONS, 153
SET PASSWORD, 190
SET PATH, 176
SET REFERENTIAL INTEGRITY, 263
SET ROLE, 175
SET SCHEMA, 176
SET SESSION AUTHORIZATION, 174
SET SESSION CHARACTERISTICS, 174
SET SESSION RESULT MEMORY ROWS, 176
SET TABLE CLUSTERED, 55
SET TABLE NEW SPACE, 268
SET TABLE read-write property, 55
SET TABLE SOURCE, 56
SET TABLE SOURCE HEADER, 57
SET TABLE SOURCE on-off, 57
SET TABLE TYPE, 55, 254
SET TIME ZONE, 175
SET TRANSACTION, 172
SHUTDOWN, 246
SIGNAL STATEMENT, 210
SIGN function, 95
Simple Data Access Control, 187

SQL Index

361

SIN function, 95
SINH function, 96
SORT_ARRAY function, 108
sort specification list, 157
SOUNDEX function, 88
SPACE function, 88
SPECIFIC, 46
SPECIFIC NAME, 197
SQL_FEATURES, 78
SQL_IMPLEMENTATION_INFO, 78
SQL_PACKAGES, 78
SQL_PARTS, 78
SQL_SIZING, 78
SQL_SIZING_PROFILES, 78
SQL DATA access characteristic, 198
SQL parameter reference, 126
SQL procedure statement, 68
SQL routine body, 196
SQRT function, 96
START TRANSACTION, 171
string value expression, 130
SUBSTR function, 89
SUBSTRING function, 89
SUCCEEDS predicate, 138
SYSDATE function, 98
SYSTEM_BESTROWIDENTIFIER, 79
SYSTEM_CACHEINFO, 79
SYSTEM_COLUMN_SEQUENCE_USAGE, 79
SYSTEM_COLUMNS, 79
SYSTEM_COMMENTS, 80
SYSTEM_CONNECTION_PROPERTIES, 80
SYSTEM_CROSSREFERENCE, 80
SYSTEM_INDEXINFO, 80
SYSTEM_KEY_INDEX_USAGE, 80
SYSTEM_PRIMARYKEYS, 80
SYSTEM_PROCEDURECOLUMNS, 80
SYSTEM_PROCEDURES, 80
SYSTEM_PROPERTIES, 80
SYSTEM_SCHEMAS, 80
SYSTEM_SEQUENCES, 80
SYSTEM_SESSIONINFO, 80
SYSTEM_SESSIONS, 80
SYSTEM_TABLES, 81
SYSTEM_TABLESTATS, 81
SYSTEM_TABLETYPES, 81
SYSTEM_TEXTTABLES, 81
SYSTEM_TYPEINFO, 81
SYSTEM_UDTS, 81
SYSTEM_USER function, 112
SYSTEM_USERS, 81
SYSTEM_VERSIONCOLUMNS, 81
system-versioned tables, 54
system-versioned tables usage, 238
SYSTIMESTAMP function, 99

T
TABLE_CONSTRAINTS, 78
TABLE_PRIVILEGES, 78
Table Function Derived Table, 147
TABLES, 78
table spaces, 239
TAN function, 96
TANH function, 96
TIMESTAMP_WITH_ZONE function, 106
TIMESTAMPADD function, 102
TIMESTAMPDIFF function, 103
TIMESTAMP function, 105
Time Zone, 24
TIMEZONE function, 97
TO_BASE64 function, 89
TO_CHAR function, 106
TO_DATE function, 106
TO_NUMBER function, 96
TO_TIMESTAMP function, 106
TODAY function, 99
TRANSACTION_CONTROL function, 114
TRANSACTION_ID function, 114
TRANSACTION_SIZE function, 114
TRANSACTION_UTC function, 114
transaction characteristics, 172
TRANSLATE function, 89
TRANSLATIONS, 78
TRIGGER_COLUMN_USAGE, 78
TRIGGER_PERIOD_USAGE, 78
TRIGGER_ROUTINE_USAGE, 78
TRIGGER_SEQUENCE_USAGE, 79
TRIGGER_TABLE_USAGE, 79
TRIGGERED_UPDATE_COLUMNS, 78
TRIGGERED SQL STATEMENT, 229
TRIGGER EXECUTION ORDER, 230
TRIGGERS, 78
TRIM_ARRAY function, 108
TRIM function, 89
TRUNCATE function, 96
TRUNCATE SCHEMA, 159
TRUNCATE TABLE, 158
TRUNC function datetime, 104
TRUNC function numeric, 96

U
UCASE function, 90
UNHEX function, 90
unicode escape elements, 121
UNION JOIN, 148
UNIQUE constraint, 52
UNIQUE predicate, 136
UNISTR function, 90
UNIX_MILLIS function, 100

SQL Index

362

UNIX_TIMESTAMP function, 100
UNNEST, 146
UPDATE, 161
UPPER function, 90
USAGE_PRIVILEGES, 79
USER_DEFINED_TYPES, 79
USER function, 112
UUID function, 111

V
value expression, 130
value expression primary, 126
value specification, 127
VIEW_COLUMN_USAGE, 79
VIEW_PERIOD_USAGE, 79
VIEW_ROUTINE_USAGE, 79
VIEW_TABLE_USAGE, 79
VIEWS, 79

W
WEEK function, 101
WHILE loop in routines, 207
WIDTH_BUCKET function, 96

Y
YEAR function, 101

363

General Index
Symbols
_SYSTEM Role, 185

A
ABS function, 92
Access Rights, 186
ACL, 316
ACOS function, 92
ACTION_ID function, 114
ADD_MONTHS function, 102
ADD COLUMN, 57
add column identity generator or sequence, 60
ADD CONSTRAINT, 58
ADD DOMAIN CONSTRAINT, 62
ADD SYSTEM PERIOD, 58
ADD SYSTEM VERSIONING, 59
ADMINISTRABLE_ROLE_AUTHORIZATIONS, 75
Admin USER, 185
aggregate function, 139
ALL and ANY predicates, 135
ALTER COLUMN, 59
alter column identity generator, 60
alter column nullability, 61
ALTER CONSTRAINT, 70
ALTER DOMAIN, 62
ALTER INDEX, 70
ALTER routine, 66
ALTER SEQUENCE, 68
ALTER SESSION, 171
ALTER TABLE, 57
ALTER USER ... SET INITIAL SCHEMA, 190
ALTER USER ... SET LOCAL, 190
ALTER USER ... SET PASSWORD, 189
ALTER view, 61
Ant, 347
APPLICABLE_ROLES, 75
ASCII function, 83
ASCIISTR function, 83
ASIN function, 92
ASSERTIONS, 75
as subquery clause in table definition, 49
ATAN2 function, 93
ATAN function, 92
Authorisation and Access Control, 184
AUTHORIZATION IDENTIFIER, 185
AUTHORIZATIONS, 75

B
backup, 240
BACKUP DATABASE, 247

BETWEEN predicate, 134
binary literal, 122
BINARY types, 20
BIT_LENGTH function, 83
BITAND function, 93
BITANDNOT function, 93
bit literal, 123
BITNOT function, 93
BITOR function, 93
BIT types, 21
BITXOR function, 93
boolean literal, 124
BOOLEAN types, 19
boolean value expression, 132
Built-in Roles and Users, 185

C
CARDINALITY function, 107
CASCADE or RESTRICT, 46
case expression, 128
CASEWHEN function, 109
CASE WHEN in routines, 208
CAST, 129
CEIL function, 93
CHANGE_AUTHORIZATION, 186
CHAR_LENGTH, 83
CHARACTER_LENGTH, 83
CHARACTER_SETS, 75
character literal, 122
CHARACTER types, 19
character value function, 131
CHAR function, 83
CHECK_CONSTRAINT_ROUTINE_USAGE, 75
CHECK_CONSTRAINTS, 75
CHECK constraint, 53
CHECKPOINT, 248
check table, 240
COALESCE expression, 128
COALESCE function, 109
COLLATE, 141
COLLATIONS, 75
COLUMN_COLUMN_USAGE, 75
COLUMN_DOMAIN_USAGE, 75
COLUMN_PRIVILEGES, 75
COLUMN_UDT_USAGE, 75
column DEFAULT clause, 51
column definition, 49
column name list, 147
column reference, 126
COLUMNS, 75
COMMENT, 47
COMMIT, 173
comparison predicate, 133

General Index

364

CONCAT_WS function, 84
CONCAT function, 84
CONSTRAINT, 141
CONSTRAINT_COLUMN_USAGE, 75
CONSTRAINT_PERIOD_USAGE, 76
CONSTRAINT_TABLE_USAGE, 76
CONSTRAINT (table constraint), 52
CONSTRAINT name and characteristics, 51
CONTAINS predicate, 137
contextually typed value specification, 126
CONVERT function, 109
COS function, 93
COSH function, 93
COT function, 94
CREATE_SCHEMA Role, 186
CREATE AGGREGATE FUNCTION, 220
CREATE ASSERTION, 72
CREATE CAST, 70
CREATE CHARACTER SET, 71
CREATE COLLATION, 71
CREATE DOMAIN, 62
CREATE FUNCTION, 195
CREATE INDEX, 69
CREATE PROCEDURE, 195
CREATE ROLE, 191
CREATE SCHEMA, 47
CREATE SEQUENCE, 67
CREATE SYNONYM, 69
CREATE TABLE, 48
CREATE TRANSLATION, 72
CREATE TRIGGER, 63, 228
CREATE TYPE, 70
CREATE USER, 189
CREATE VIEW, 61
CROSS JOIN, 148
CRYPT_KEY function, 111
CURDATE function, 98
CURRENT_CATALOG function, 113
CURRENT_DATE function, 98
CURRENT_ROLE function, 112
CURRENT_SCHEMA function, 112
CURRENT_TIME function, 98
CURRENT_TIMESTAMP function, 98
CURRENT_USER function, 112
CURRENT VALUE FOR, 130
CURTIME function, 98

D
DATA_TYPE_PRIVILEGES, 76
DATABASE_ISOLATION_LEVEL function, 114
DATABASE_NAME function, 112
DATABASE_TIMEZONE function, 97
DATABASE_VERSION function, 112

DATABASE function, 112
DATE_ADD function, 103
DATE_SUB function, 103
DATEADD function, 103
DATEDIFF function, 103
DATENAME, DATEPART and EOMONTH functions,
99
datetime and interval literal, 124
Datetime Operations, 24
DATETIME types, 23
datetime value expression, 131
datetime value function, 131
DAYNAME function, 99
DAYOFMONTH function, 99
DAYOFWEEK function, 99
DAYOFYEAR function, 99
DAYS function datetime, 99
DBA Role, 185
DECLARE CURSOR, 121
DECLARE HANDLER, 204
DECLARE variable, 202
DECODE function, 110
DEGREES function, 94
DELETE FROM, 158
derived table, 146
DETERMINISTIC characteristic, 198
DIAGNOSTICS function, 111
DIFFERENCE function, 84
DISCONNECT, 174
DISTINCT, 153
DOMAIN_CONSTRAINTS, 76
DOMAINS, 76
DROP ASSERTION, 72
DROP CAST, 71
DROP CHARACTER SET, 71
DROP COLLATION, 71
DROP COLUMN, 58
drop column identity generator, 60
DROP CONSTRAINT, 58
DROP DEFAULT (table), 60
DROP DOMAIN, 63
DROP DOMAIN CONSTRAINT, 63
DROP DOMAIN DEFAULT, 62
DROP INDEX, 70
DROP ROLE, 191
DROP routine, 67
DROP SCHEMA, 48
DROP SEQUENCE, 68
DROP SYNONYM, 69
DROP SYSTEM PERIOD, 59
DROP SYSTEM VERSIONING, 59
DROP TABLE, 54
DROP TRANSLATION, 72
DROP TRIGGER, 64, 230

General Index

365

DROP USER, 189
DROP VIEW, 61
DYNAMIC RESULT SETS, 199

E
ELEMENT_TYPES, 76
ENABLED_ROLES, 76
EQUALS predicate, 137
EXISTS predicate, 136
EXP function, 94
EXPLAIN PLAN, 158
EXPLAIN REFERENCES, 73
expression, 128
external authentication, 246
EXTERNAL NAME, 197
EXTRACT function, 101

F
Fine Grained Data Access Control, 188
FLOOR function, 94
FOREIGN KEY constraint, 52
FOR loop in routines, 207
FROM_BASE64 function, 84
FROM_TZ function, 105

G
generated column specification, 50
GET DIAGNOSTICS, 164
Gradle, 346
GRANTED BY, 191
GRANT privileges, 191
GRANT role, 192
GREATEST function, 110
GROUP BY, 151
GROUPING OPERATIONS, 151

H
HAVING, 153
HEX function, 85
HEXTORAW function, 85
HOUR function, 100

I
identifier chain, 125
identifier definition, 45
IDENTITY function, 112
IF EXISTS, 46
IF NOT EXISTS, 46
IFNULL function, 110
IF STATEMENT, 209
INFORMATION_SCHEMA_CATALOG_NAME, 76
init script, 326
IN predicate, 134

INSERT function, 84
INSERT INTO, 159
INSTR function, 84
interval absolute value function, 132
interval term, 131
INTERVAL types, 28
IS_AUTOCOMMIT function, 113
IS_READONLY_DATABASE_FILES function, 113
IS_READONLY_DATABASE function, 113
IS_READONLY_SESSION function, 113
IS DISTINCT predicate, 137
ISNULL function, 110
IS NULL predicate, 135
ISOLATION_LEVEL function, 113

J
JOIN USING, 149
JOIN with condition, 149
JSON_ARRAY_AGG function, 91, 92
JSON_ARRAY function, 91
JSON_OBJECT function, 91

K
KEY_COLUMN_USAGE, 76
KEY_PERIOD_USAGE, 76

L
LANGUAGE, 197
LAST_DAY function, 102
LATERAL, 146
LCASE function, 85
LEAST function, 110
LEFT function, 85
LENGTH function, 85
like clause in table definition, 48
LIKE predicate, 135
Listing Users and Roles, 186
LN function, 94
LOAD_FILE function, 110
LOB_ID function, 114
LOCALTIME function, 98
LOCALTIMESTAMP function, 98
LOCATE function, 85
LOCK TABLE, 172
LOG10 function, 94
LOG function, 94
LOOP in routines, 207
LOWER function, 85
LPAD function, 86
LTRIM function, 86

M
MATCH predicate, 136

General Index

366

MAX_CARDINALITY function, 108
memory use, 270
MERGE INTO, 162
MINUTE function, 100
MOD function, 94
MONTH function, 100
MONTHNAME function, 100
MONTHS_BETWEEN function, 102

N
name resolution, 151
naming in joined table, 150
naming in select list, 151
NATURAL JOIN, 149
NAVL function, 94
NEXT_DAY function, 101
NEXT VALUE FOR, 129
NOW function, 98
NULLIF function, 110
NULL INPUT, 198
numeric literal, 123
NUMERIC types, 17
numeric value expression, 130
numeric value function, 130
NUMTODSINTERVAL function, 105
NUMTOYMINTERVAL function, 105
NVL2 function, 111
NVL function, 111

O
OCTET_LENGTH function, 86
ON UPDATE clause (table constraint), 51
OTHER type, 22
OUTER JOIN, 149
OVERLAPS predicate, 138
OVERLAY function, 86

P
PARAMETERS, 76
password complexity, 246
PATH, 141
PERFORM CHECK INDEX, 250
PERFORM EXPORT DSV, 249
PERFORM EXPORT SCRIPT, 248
PERFORM IMPORT DSV file, 250
PERFORM IMPORT SCRIPT, 249
PERIODS, 76
PI function, 95
POSITION_ARRAY function, 108
POSITION function, 86
POWER function, 95
PRECEDES predicate, 138
PRIMARY KEY constraint, 52

PUBLIC Role, 185

Q
QUARTER function, 100

R
RADIANS function, 95
RAND function, 95
RAWTOHEX function, 86
REFERENTIAL_CONSTRAINTS, 76
REGEXP_COUNT function, 87
REGEXP_INSTR function, 87
REGEXP_LIKE function, 87
REGEXP_MATCHES function, 87
REGEXP_REPLACE function, 87
REGEXP_SUBSTR function, 87
REGEXP_SUBSTRING_ARRAY function, 87
REGEXP_SUBSTRING function, 87
RELEASE SAVEPOINT, 173
RENAME, 46
REPEAT ... UNTIL loop in routines, 207
REPEAT function, 88
REPLACE function, 88
replicated databases, 239
RESIGNAL STATEMENT, 211
RETURN, 209
RETURNS, 195
REVERSE function, 88
REVOKE privileges, 193
REVOKE ROLE, 193
RIGHT function, 88
ROLE_AUTHORIZATION_DESCRIPTORS, 76
ROLE_COLUMN_GRANTS, 77
ROLE_ROUTINE_GRANTS, 77
ROLE_TABLE_GRANTS, 77
ROLE_UDT_GRANTS, 77
ROLE_USAGE_GRANTS, 77
ROLLBACK, 173
ROLLBACK TO SAVEPOINT, 174
ROUND function datetime, 104
ROUND number function, 95
ROUTINE_COLUMN_USAGE, 77
ROUTINE_JAR_USAGE, 77
ROUTINE_PERIOD_USAGE, 77
ROUTINE_PRIVILEGES, 77
ROUTINE_ROUTINE_USAGE, 77
ROUTINE_SEQUENCE_USAGE, 77
ROUTINE_TABLE_USAGE, 77
routine body, 196
routine invocation, 141
ROUTINES, 77
ROW_NUMBER function, 115
ROWNUM function, 115

General Index

367

row value expression, 127
RPAD function, 88
RTRIM function, 88

S
SAVEPOINT, 173
SAVEPOINT LEVEL, 198
schema routine, 64
SCHEMATA, 77
SCRIPT, 248
SCRIPT_OPS Role, 186
search condition, 141
SECOND function, 100
SECONDS_SINCE_MIDNIGHT function, 100
security, 6, 313, 316
SELECT, 143
SELECT : SINGLE ROW, 206
SEQUENCE_ARRAY function, 108
SEQUENCES, 77
SESSION_ID function, 113
SESSION_ISOLATION_LEVEL function, 114
SESSION_TIMEZONE function, 97
SESSION_USER function, 112
SESSIONTIMEZONE function, 97
SET AUTOCOMMIT, 171
SET CATALOG, 175
set clause in UPDATE and MERGE statements, 161
SET CONSTRAINTS, 172
SET DATABASE AUTHENTICATION FUNCTION,
269
SET DATABASE COLLATION, 250
SET DATABASE DEFAULT INITIAL SCHEMA, 190
SET DATABASE DEFAULT ISOLATION LEVEL,
254
SET DATABASE DEFAULT RESULT MEMORY
ROWS, 251
SET DATABASE DEFAULT TABLE TYPE, 251
SET DATABASE EVENT LOG LEVEL, 251
SET DATABASE GC, 252
SET DATABASE LIVE OBJECT, 261
SET DATABASE PASSWORD CHECK FUNCTION,
268
SET DATABASE SQL AVG SCALE, 259
SET DATABASE SQL CHARACTER LITERAL, 257
SET DATABASE SQL CONCAT NULLS, 258
SET DATABASE SQL CONVERT TRUNCATE, 259
SET DATABASE SQL DOUBLE NAN, 259
SET DATABASE SQL IGNORECASE, 260
SET DATABASE SQL LOWER CASE IDENTIFIER,
261
SET DATABASE SQL NAMES, 255
SET DATABASE SQL NULLS FIRST, 260
SET DATABASE SQL NULLS ORDER, 260

SET DATABASE SQL REFERENCES, 256
SET DATABASE SQL REGULAR NAMES, 255
SET DATABASE SQL RESTRICT EXEC, 254
SET DATABASE SQL SIZE, 255
SET DATABASE SQL SYNTAX DB2, 262
SET DATABASE SQL SYNTAX MSS, 262
SET DATABASE SQL SYNTAX MYS, 262
SET DATABASE SQL SYNTAX ORA, 263
SET DATABASE SQL SYNTAX PGS, 263
SET DATABASE SQL SYS INDEX NAMES, 261
SET DATABASE SQL TDC DELETE, 256
SET DATABASE SQL TRANSLATE TTI TYPES, 257
SET DATABASE SQL TRUNCATE TRAILING, 258
SET DATABASE SQL TYPES, 256, 257
SET DATABASE SQL UNIQUE NULLS, 258
SET DATABASE TEXT TABLE DEFAULTS, 253
SET DATABASE TRANSACTION CONTROL, 253
SET DATABASE TRANSACTION ROLLBACK ON
CONFLICT, 253, 253
SET DATABASE UNIQUE NAME, 254
SET DATA TYPE, 60
SET DEFAULT, 59
SET DOMAIN DEFAULT, 62
SET FILES BACKUP INCREMENT, 264
SET FILES CACHE ROWS, 264
SET FILES CACHE SIZE, 264
SET FILES DEFRAG, 265
SET FILES LOB COMPRESSED, 267
SET FILES LOB SCALE, 267
SET FILES LOG, 265
SET FILES LOG SIZE, 265
SET FILES NIO, 265
SET FILES NIO SIZE, 266
SET FILES SCALE, 266
SET FILES SCRIPT FORMAT, 267
SET FILES SPACE, 267
SET FILES WRITE DELAY, 266
set function specification, 127
SET IGNORECASE, 177
SET INITIAL SCHEMA*, 190
SET MAXROWS, 176
SET OPERATIONS, 153
SET PASSWORD, 190
SET PATH, 176
SET REFERENTIAL INTEGRITY, 263
SET ROLE, 175
SET SCHEMA, 176
SET SESSION AUTHORIZATION, 174
SET SESSION CHARACTERISTICS, 174
SET SESSION RESULT MEMORY ROWS, 176
SET TABLE CLUSTERED, 55
SET TABLE NEW SPACE, 268
SET TABLE read-write property, 55
SET TABLE SOURCE, 56

General Index

368

SET TABLE SOURCE HEADER, 57
SET TABLE SOURCE on-off, 57
SET TABLE TYPE, 55, 254
SET TIME ZONE, 175
SET TRANSACTION, 172
SHUTDOWN, 246
SIGNAL STATEMENT, 210
SIGN function, 95
Simple Data Access Control, 187
SIN function, 95
SINH function, 96
SORT_ARRAY function, 108
sort specification list, 157
SOUNDEX function, 88
SPACE function, 88
SPECIFIC, 46
SPECIFIC NAME, 197
SQL_FEATURES, 78
SQL_IMPLEMENTATION_INFO, 78
SQL_PACKAGES, 78
SQL_PARTS, 78
SQL_SIZING, 78
SQL_SIZING_PROFILES, 78
SQL DATA access characteristic, 198
SQL parameter reference, 126
SQL procedure statement, 68
SQL routine body, 196
SQRT function, 96
START TRANSACTION, 171
string value expression, 130
SUBSTR function, 89
SUBSTRING function, 89
SUCCEEDS predicate, 138
SYSDATE function, 98
SYSTEM_BESTROWIDENTIFIER, 79
SYSTEM_CACHEINFO, 79
SYSTEM_COLUMN_SEQUENCE_USAGE, 79
SYSTEM_COLUMNS, 79
SYSTEM_COMMENTS, 80
SYSTEM_CONNECTION_PROPERTIES, 80
SYSTEM_CROSSREFERENCE, 80
SYSTEM_INDEXINFO, 80
SYSTEM_KEY_INDEX_USAGE, 80
SYSTEM_PRIMARYKEYS, 80
SYSTEM_PROCEDURECOLUMNS, 80
SYSTEM_PROCEDURES, 80
SYSTEM_PROPERTIES, 80
SYSTEM_SCHEMAS, 80
SYSTEM_SEQUENCES, 80
SYSTEM_SESSIONINFO, 80
SYSTEM_SESSIONS, 80
SYSTEM_TABLES, 81
SYSTEM_TABLESTATS, 81
SYSTEM_TABLETYPES, 81

SYSTEM_TEXTTABLES, 81
SYSTEM_TYPEINFO, 81
SYSTEM_UDTS, 81
SYSTEM_USER function, 112
SYSTEM_USERS, 81
SYSTEM_VERSIONCOLUMNS, 81
system-versioned tables, 54
system-versioned tables usage, 238
SYSTIMESTAMP function, 99

T
TABLE_CONSTRAINTS, 78
TABLE_PRIVILEGES, 78
Table Function Derived Table, 147
TABLES, 78
table spaces, 239
TAN function, 96
TANH function, 96
TIMESTAMP_WITH_ZONE function, 106
TIMESTAMPADD function, 102
TIMESTAMPDIFF function, 103
TIMESTAMP function, 105
Time Zone, 24
TIMEZONE function, 97
TO_BASE64 function, 89
TO_CHAR function, 106
TO_DATE function, 106
TO_NUMBER function, 96
TO_TIMESTAMP function, 106
TODAY function, 99
TRANSACTION_CONTROL function, 114
TRANSACTION_ID function, 114
TRANSACTION_SIZE function, 114
TRANSACTION_UTC function, 114
transaction characteristics, 172
TRANSLATE function, 89
TRANSLATIONS, 78
TRIGGER_COLUMN_USAGE, 78
TRIGGER_PERIOD_USAGE, 78
TRIGGER_ROUTINE_USAGE, 78
TRIGGER_SEQUENCE_USAGE, 79
TRIGGER_TABLE_USAGE, 79
TRIGGERED_UPDATE_COLUMNS, 78
TRIGGERED SQL STATEMENT, 229
TRIGGER EXECUTION ORDER, 230
TRIGGERS, 78
TRIM_ARRAY function, 108
TRIM function, 89
TRUNCATE function, 96
TRUNCATE SCHEMA, 159
TRUNCATE TABLE, 158
TRUNC function datetime, 104
TRUNC function numeric, 96

General Index

369

U
UCASE function, 90
UNHEX function, 90
unicode escape elements, 121
UNION JOIN, 148
UNIQUE constraint, 52
UNIQUE predicate, 136
UNISTR function, 90
UNIX_MILLIS function, 100
UNIX_TIMESTAMP function, 100
UNNEST, 146
UPDATE, 161
upgrading, 276
UPPER function, 90
USAGE_PRIVILEGES, 79
USER_DEFINED_TYPES, 79
USER function, 112
UUID function, 111

V
value expression, 130
value expression primary, 126
value specification, 127
VIEW_COLUMN_USAGE, 79
VIEW_PERIOD_USAGE, 79
VIEW_ROUTINE_USAGE, 79
VIEW_TABLE_USAGE, 79
VIEWS, 79

W
WEEK function, 101
WHILE loop in routines, 207
WIDTH_BUCKET function, 96

Y
YEAR function, 101

	HyperSQL User Guide
	Table of Contents
	Preface
	Available formats for this document

	Chapter 1. Running and Using HyperSQL
	Introduction
	The HSQLDB Jar
	Running Database Access Tools
	A HyperSQL Database
	In-Process Access to Database Catalogs
	Server Modes
	HyperSQL HSQL Server
	HyperSQL HTTP Server
	HyperSQL HTTP Servlet
	Connecting to a Database Server
	Security Considerations
	Using Multiple Databases

	Accessing the Data
	Closing the Database
	Creating a New Database

	Chapter 2. SQL Language
	SQL Standards Support
	Definition Statements (DDL and others)
	Data Manipulation Statements (DML)
	Data Query Statements (DQL)
	Calling User Defined Procedures and Functions
	Setting Properties for the Database and the Session
	General Operations on Database
	Transaction Statements
	Comments in Statements
	Statements in SQL Routines

	SQL Data and Tables
	Case Sensitivity
	Persistent Tables
	Temporary Tables

	Short Guide to Data Types
	Data Types and Operations
	Numeric Types
	Boolean Type
	Character String Types
	Binary String Types
	Bit String Types
	Lob Data
	Storage and Handling of Java Objects
	Type Length, Precision and Scale

	Datetime types
	Interval Types
	Arrays
	Array Definition
	Trigraph

	Array Reference
	Array Operations

	Chapter 3. Schemas and Database Objects
	Overview
	Schemas and Schema Objects
	Names and References
	Character Sets
	Collations
	Distinct Types
	Domains
	Number Sequences
	Tables
	Views
	Constraints
	Assertions
	Triggers
	Routines
	Indexes
	Synonyms

	Statements for Schema Definition and Manipulation
	Common Elements and Statements
	Renaming Objects
	Commenting Objects
	Schema Creation
	Table Creation
	Temporal System-Versioned Tables and SYSTEM_TIME Period
	Table Settings
	Table Manipulation
	View Creation and Manipulation
	Domain Creation and Manipulation
	Trigger Creation
	Routine Creation
	Sequence Creation
	SQL Procedure Statement
	Other Schema Objects Creation and Alteration

	The Information Schema
	References to Database Objects
	Predefined Character Sets, Collations and Domains
	Views in INFORMATION SCHEMA
	Visibility of Information
	Name Information
	Data Type Information
	Product Information
	Operations Information
	SQL Standard Views
	HyperSQL Custom Views

	Chapter 4. Built In Functions
	Overview
	String and Binary String Functions
	JSON Functions
	Numeric Functions
	Date Time and Interval Functions
	Functions to Report the Time Zone.
	Functions to Report the Current Datetime
	Functions to Extract an Element of a Datetime
	Functions for Datetime Arithmetic
	Functions to Convert or Format a Datetime

	Array Functions
	General Functions
	System Functions

	Chapter 5. Data Access and Change
	Overview
	Cursors And Result Sets
	Columns and Rows
	Navigation
	Updatability
	Sensitivity
	Holdability
	Autocommit
	JDBC Overview
	JDBC Parameters
	JDBC and Data Change Statements
	JDBC Callable Statement
	JDBC Returned Values
	Cursor Declaration

	Syntax Elements
	Literals
	References, etc.
	Value Expression
	Predicates
	Aggregate Functions
	Other Syntax Elements

	Data Access Statements
	Select Statement
	Table
	Subquery
	Query Specification
	Table Expression
	Table or Query Name
	System Time Period
	Derived Table
	Lateral
	UNNEST
	Table Function Derived Table
	Parenthesized Joined Table
	Column Name List

	Joined Table
	Selection
	Projection
	Computed Columns
	Naming
	Grouping Operations
	Aggregation
	Set Operations
	With Clause and Recursive Queries
	Query Expression
	Ordering
	Slicing
	Indexes Used in SELECT and DML Statements

	Data Change Statements
	Delete Statement
	Truncate Statement
	Insert Statement
	Update Statement
	Merge Statement

	Diagnostics and State

	Chapter 6. Sessions and Transactions
	Overview
	Session Attributes and Variables
	Session Attributes
	Session Variables
	Session Tables

	Transactions and Concurrency Control
	Two Phase Locking
	Two Phase Locking with Snapshot Isolation
	Lock Contention in 2PL
	Locks in SQL Routines and Triggers
	MVCC
	Choosing the Transaction Model
	Schema and Database Change
	Simultaneous Access to Tables
	Viewing Sessions

	Session and Transaction Control Statements

	Chapter 7. Text Tables
	Overview
	The Implementation
	Definition of Tables
	Scope and Reassignment
	Null Values in Columns of Text Tables
	Configuration
	Disconnecting Text Tables

	Text File Usage
	Text File Global Properties
	Transactions

	Chapter 8. Access Control
	Overview
	Authorizations and Access Control
	Built-In Roles and Users
	Listing Users and Roles
	Access Rights
	Simple Access Control
	Fine-Grained Data Access Control

	Statements for Authorization and Access Control

	Chapter 9. SQL-Invoked Routines
	Overview
	Routine Definition
	Routine Characteristics

	SQL Language Routines (PSM)
	Advantages and Disadvantages
	Routine Statements
	Compound Statement
	Table Variables
	Variables
	Cursors
	Handlers
	Assignment Statement
	Select Statement : Single Row
	Formal Parameters
	Iterated Statements
	Iterated FOR Statement
	Conditional Statements
	Return Statement
	Control Statements
	Raising Exceptions
	Routine Polymorphism
	Returning Data From Procedures
	Recursive Routines

	Java Language Routines (SQL/JRT)
	Polymorphism
	Java Language Procedures
	Java Static Methods
	Legacy Support
	Securing Access to Classes and Routines
	Warning

	User-Defined Aggregate Functions
	Definition of Aggregate Functions
	SQL PSM Aggregate Functions
	Java Aggregate Functions

	Chapter 10. Triggers
	Overview
	BEFORE Triggers
	AFTER Triggers
	INSTEAD OF Triggers

	Trigger Properties
	Trigger Event
	Granularity
	Trigger Action Time
	References to Rows
	Trigger Condition
	Trigger Action in SQL
	Trigger Action in Java

	Trigger Creation

	Chapter 11. System Management
	Modes of Operation
	Deployment Types
	Database Types
	Readonly Databases
	RES and Files Readonly Databases

	Tables
	Large Objects
	Deployment context

	Indexes and Query Speed
	Query Processing and Optimisation
	Indexes and Conditions
	Indexes and Operations
	Indexes and ORDER BY, OFFSET and LIMIT

	ACID, Persistence and Reliability
	Atomicity, Consistency, Isolation, Durability
	System Operations

	Temporal System-Versioned Tables
	Replicated Databases
	Using Table Spaces
	Checking Database Tables and Indexes
	Backing Up and Restoring Database Catalogs
	Making Online Backups
	Offline Backup Utility Syntax
	Making Offline Backups
	Examining Backups
	Restoring a Backup

	Encrypted Databases
	Creating and Accessing an Encrypted Database
	Speed Considerations
	Security Considerations

	Monitoring Database Operations
	External Statement Level Monitoring
	Internal Statement Level Monitoring
	Internal Event Monitoring
	Log4J and JDK logging
	Server Operation Monitoring

	Database Security
	Basic Security Recommendations
	Beyond Security Defaults
	Authentication Control

	Statements
	System Operations
	Data Management Statements
	Database Settings
	SQL Conformance Settings
	Cache, Persistence and Files Settings
	Authentication Settings

	Chapter 12. Deployment Guide
	Memory and Disk Use
	Table Memory Allocation
	Result Set Memory Allocation
	Temporary Memory Use During Operations
	Data Cache Memory Allocation
	Object Pool Memory Allocation
	Lob Memory Usage
	Using NIO File Access
	Disk Space Use
	Using HyperSQL Without Logging Data Change
	Bulk Inserts, Updates and Deletes

	Managing Database Connections
	Application Development and Testing
	Tweaking the Mode of Operation
	Embedded Databases in Desktop Applications
	Embedded Databases in Server Applications
	Mixed Mode : Embedding a HyperSQL Server (Listener)
	Server Databases

	Upgrading Databases
	Manual Changes to the *.script File

	Backward Compatibility Issues
	HyperSQL Dependency Settings for Applications
	What version to Pull
	Range Versioning
	Range Dependency Specification Examples

	Chapter 13. Compatibility With Other DBMS
	Compatibility Overview
	PostgreSQL Compatibility
	MySQL Compatibility
	Firebird Compatibility
	Apache Derby Compatibility
	Oracle Compatibility
	DB2 Compatibility
	MS SQLServer and Sybase Compatibility

	Chapter 14. Properties
	Connection URL
	Variables in Connection URL
	Connection Properties
	Properties for Individual Connections
	Properties for the Database
	SQL Conformance Properties
	Database Operations Properties
	Database File and Memory Properties
	Crypt Properties

	System Properties

	Chapter 15. HyperSQL Network Listeners (Servers)
	Listeners
	HyperSQL Server
	HyperSQL HTTP Server
	HyperSQL HTTP Servlet

	Server and Web Server Properties
	Starting a Server from your Application
	Shutting down a Server from your Application
	Allowing a Connection to Open or Create a Database
	Specifying Database Properties at Server Start
	TLS Encryption
	Requirements
	Encrypting your JDBC connection
	Client-Side
	Server-Side (Listener-Side)

	Making a Private-key Keystore
	CA-Signed Cert
	Non-CA-Signed Cert

	Automatic Server or WebServer startup on UNIX

	Network Access Control

	Chapter 16. HyperSQL on UNIX
	Purpose
	Installation
	Setting up a HyperSQL Persistent Database Catalog and a HyperSQL Network Listener
	Accessing your Database
	Create additional Accounts
	Shutdown
	Running Hsqldb as a System Daemon
	Portability of hsqldb init script
	Init script Setup Procedure
	Troubleshooting the Init Script

	Upgrading

	Chapter 17. HyperSQL via ODBC
	Overview
	Unix / Linux Installation
	Windows Installation
	Settings
	Samples
	Table of Settings

	Appendix A. Lists of Keywords
	List of SQL Standard Keywords
	List of SQL Keywords Disallowed as HyperSQL Identifiers
	Special Function Keywords

	Appendix B. HyperSQL Database Files and Recovery
	Database Files
	States
	Procedures
	Clean Shutdown
	Startup
	Restore

	Appendix C. Building HSQLDB Jars
	Purpose
	Building with Gradle
	Building with Apache Ant
	Obtaining Ant
	Building HSQLDB with Ant

	Building with IDE Compilers
	HyperSQL CodeSwitcher
	Building Documentation

	Appendix D. HyperSQL with OpenOffice
	HyperSQL with OpenOffice
	Using OpenOffice / LibreOffice as a Database Tool
	Converting .odb files to use with HyperSQL Server
	OpenOffice / LibreOffice Extensions for HyperSQL

	Appendix E. HyperSQL File Links
	SQL Index
	General Index

